Blind Deblurring using Internal Patch Recurrence

Tomer Michaeli & Michal Irani Weizmann Institute

Small patterns recur at different scales

Small patterns recur at different scales

Small patterns recur at different scales

True for most patches in any natural image [Glasner *et al.* `09]

Small patterns recur at different scales

- Fractal image compression

[Barnsley & Sloan `87], ...

Single image super-resolution

[Glasner *et al.* `09], [Freedman & Fattal `11], ...

True for most patches in any natural image [Glasner *et al.* `09]

cales Small patterns recur at diff rion Fractal image cop [Barnsley & oper-resolution - Single et al. `09], 🖌 🖌 édman & Fattal `11], ...

True for most patches in any natural image [Glasner *et al.* `09]

Sharp Image

Blurry image *y*

Blurry image *y*

Deblurring

Blurry image *y*

Deblurring

y = x * k

Sharp image *x*

Blurry image y

Deblurring

 $y = x * \overline{k}$

Sharp image x

Examples of previous priors:

• Enhance/detect edges

[Xu & Jia `10], [Cho & Lee `09], [Cho et al. `11], ...

• Sparse gradients

[Levin et al. `11], [Krishnan et al. `11], ...

External patch prior

[Sun *et al.* `13]

Blurry image y

Deblurring

 $y = x * \overline{k}$

Sharp image x

Examples of previous priors:

• Enhance/detect edges

[Xu & Jia `10], [Cho & Lee `09], [Cho et al. `11], ...

• Sparse gradients

[Levin et al. `11], [Krishnan et al. `11], ...

External patch prior

[Sun *et al.* `13]

Blurry image *y*

Deblurring

y = x * k

Sharp image *x*

Blind Super Resolution

[Michaeli & Irani `13]

<u>Blind Super Resolution</u> ≠ Blind Deblurring

[Michaeli & Irani `13]

[Michaeli & Irani `13]

Blurry image y f(x) = x + kBlurry image y f(x) = y + k f(x) = x + kBlind Super Resolution \neq Blind Deblurring

[Michaeli & Irani `13]

Blurry image *y*

Sharp image x

k ≠ PSF k = PSF Blind Super Resolution ≠ Blind Deblurring

[Michaeli & Irani `13]

 $K(\omega) = \frac{\mathcal{PSF}(\omega)}{\mathcal{PSF}(\omega/\alpha)}$

Zoom-in by α

Blurry image *y*

Sharp image x

k ≠ PSF k = PSF Blind Super Resolution ≠ Blind Deblurring

[Michaeli & Irani `13]

 $\frac{K(\omega)}{\mathcal{PSF}(\omega/\mathbf{x})} = 1$ Zoom-in by α

Blurry image y

k ≠ PSF k = PSF Blind Super Resolution ≠ Blind Deblurring

[Michaeli & Irani `13]

$$K(\omega) = rac{\mathcal{PSF}(\omega)}{\mathcal{PSF}(\omega/\lambda)} = 1$$
 Zoom-in by α

$$k(\xi) = \delta(\xi)$$

Blurry image *y*

Sharp image x

k ≠ PSF k = PSF Blind Super Resolution ≠ Blind Deblurring

[Michaeli & Irani `13]

 $k(\xi) = \delta(\xi)$

$$K(\omega) = rac{\mathcal{PSF}(\omega)}{\mathcal{PSF}(\omega/\lambda)} = 1$$
 Zoom-in by α

Regardless of the PSF !!!

Blurry image *y*

Deblurring

y = x * k

Sharp image *x*

Blurry image *y*

Deblurring

y = x * k

Blurry image y

Deblurring

y = x * k

Sharp image x

Blurry image y

Deblurring

y = x * k

Sharp image *x*

Blurry image y

Kine the second se

Sharp image *x*

Blurry image y

Sharp image *x* * sinc 20

 $\arg\min \|y - k * x\|^2 + \lambda \rho(x, x^{\alpha})$ x,kdata term prior

Blurry image y

Blurry image y

The <u>unknown</u> sharp patches <u>surface out</u> in coarse scales of the blurry image!

$$k\!=\!\delta$$
 .

$$x = y$$

$$\underset{x,k}{\operatorname{arg\,min}} \underbrace{\|y - k * x\|^2}_{\text{data term}} + \lambda \underbrace{\rho(x, x^{\alpha})}_{\text{prior}}$$

$$k\!=\!\delta$$
 .

$$x = y$$

x

$$\underset{x,k}{\operatorname{arg\,min}} \underbrace{\|y - k * x\|^2}_{\text{data term}} + \lambda \underbrace{\rho(x, x^{\alpha})}_{\text{prior}}$$

$$\underset{x,k}{\operatorname{arg\,min}} \underbrace{\|y - k * x\|^2}_{\text{data term}} + \lambda \underbrace{\rho(x, x^{\alpha})}_{\text{prior}}$$

 $\arg\min \|y - k * x\|^2 + \lambda \rho(x, x^{\alpha})$ x,kdata term prior

$$\underset{x,k}{\operatorname{arg\,min}} \|y - k * x\|^2 + \lambda \rho(x, x^{\alpha})$$

$$\underset{x,k}{\operatorname{arg\,min}} \|y - k * x\|^2 + \lambda \rho(x, x^{\alpha})$$

Initialize
$$k = \delta$$
, $x = y$
For $t = 1 \dots T$
1. **Prior Update:**
 $x^{\alpha} = (x * \operatorname{sinc}) \downarrow_{\alpha}$
2. **Deblurring:**
Minimize w.r.t x
3. **Kernel Update:**
Minimize w.r.t k
End

$$\underset{x,k}{\operatorname{arg\,min}} \|y - k * x\|^2 + \lambda \rho(x, x^{\alpha})$$

Initialize
$$k = \delta, x = y$$

For $t = 1 \dots T$
1. Prior Update:
 $x^{\alpha} = (x * \operatorname{sinc}) \downarrow_{\alpha}$
2. Deblurring:
Minimize w.r.t x
3. Kernel Update:
Minimize w.r.t k
End

$$\underset{x,k}{\operatorname{arg\,min}} \|y - k * x\|^2 + \lambda \rho(x, x^{\alpha})$$

Initialize
$$k = \delta$$
, $x = y$
For $t = 1 \dots T$

1. Prior Update:
 $x^{\alpha} = (x * \operatorname{sinc}) \downarrow_{\alpha}$
2. Deblurring:
Minimize w.r.t x
3. Kernel Update:
Minimize w.r.t k
End

$$\underset{x,k}{\operatorname{arg\,min}} \|y - k \ast x\|^{2} + \lambda \rho (x x^{\alpha})$$

Initialize
$$k = \delta$$
, $x = y$
For $t = 1 \dots T$
1. **Prior Update:**
 $x^{\alpha} = (x * \operatorname{sinc}) \downarrow_{\alpha}$
2. **Deblurring:**
Minimize w.r.t x
3. **Kernel Update:**
Minimize w.r.t k
End

$$\underset{x,k}{\operatorname{arg\,min}} \|y - k \|^2 + \lambda \rho(x, x^{\alpha})$$

Initialize
$$k = \delta$$
, $x = y$
For $t = 1 \dots T$
1. **Prior Update:**
 $x^{\alpha} = (x * \operatorname{sinc}) \downarrow_{\alpha}$
2. **Deblurring:**
Minimize w.r.t x
3. **Kernel Update:**
Minimize w.r.t k
End

Results

Dataset of [Sun et al. '13] - 640 images

(80 sharp images x 8 blurs)

Results

Dataset of [Sun et al. '13] - 640 images

(80 sharp images x 8 blurs)

Comparison to the state-of-the art:

Sun, Cho, Wang, Hays – ICCP 2013
 Xu & Jia – ECCV 2010
 Cho & Lee – TOG 2009
 Cho, Paris, Horn, Freeman – CVPR 2011
 Levin, Weiss, Durand, Freeman – CVPR 2011
 Krishnan, Tay, Fergus – CVPR 2011
Dataset of [Sun et al. '13] - 640 images

(80 sharp images x 8 blurs)

Comparison to the state-of-the art:

External patch prior

[1] Sun, Cho, Wang, Hays – ICCP 2013
[2] Xu & Jia – ECCV 2010
[3] Cho & Lee – TOG 2009
[4] Cho, Paris, Horn, Freeman – CVPR 2011
[5] Levin, Weiss, Durand, Freeman – CVPR 2011
[6] Krishnan, Tay, Fergus – CVPR 2011

Dataset of [Sun et al. '13] - 640 images

(80 sharp images x 8 blurs)

Comparison to the state-of-the art:

External patch prior

[1] Sun, Cho, Wang, Hays – ICCP 2013 [2] Xu & Jia – ECCV 2010 [3] Cho & Lee – TOG 2009 [4] Cho, Paris, Horn, Freeman – CVPR 2011 Gradient **J** [5] Levin, Weiss, Durand, Freeman – CVPR 2011 **sparsity prior** [6] Krishnan, Tay, Fergus – CVPR 2011

Dataset of [Sun et al. '13] - 640 images

(80 sharp images x 8 blurs)

Dataset of [Sun et al. '13] - 640 images

(80 sharp images x 8 blurs)

Nonblind deblurring: Zoran & Weiss – ICCV 2011

Relative error *w.r.t.* ground-truth kernel

ERR(Estimated kernel)

ERR(GT kernel)

Relative error *w.r.t.* ground-truth kernel

ERR(Estimated kernel) ERR(GT kernel)

Average Error Ratio

Relative error *w.r.t.* ground-truth kernel

ERR(Estimated kernel) ERR(GT kernel)

Average Error Ratio

Relative error *w.r.t.* ground-truth kernel

ERR(Estimated kernel) ERR(GT kernel)

Average Error Ratio

Relative error *w.r.t.* ground-truth kernel

ERR(Estimated kernel) ERR(GT kernel)

Blurry images

Our Method

Our Method

Levin *et al.*

Xu & Jia

Sun *et al.*

Our Method

Robustness

Worst-Case Error Ratio

Robustness

Internal patch prior **→** An <u>image-specific</u> prior

Robustness

Internal patch prior **→** An <u>image-specific</u> prior

Worst Results

Cho et al.

Krishnan et al.

Cho & Lee

Worst Results

Xu & Jia

Levin *et al*.

Sun et al.

Worst Results

Our

- Deviations from ideal patch recurrence
 - \rightarrow cue for recovering the blur

- Deviations from ideal patch recurrence
 → cue for recovering the blur
- Undoing the blur maximizes cross-scale similarity

- Deviations from ideal patch recurrence
 → cue for recovering the blur
- Undoing the blur maximizes cross-scale similarity
- State-of-the art, robust blind-deblurring

- Deviations from ideal patch recurrence
 → cue for recovering the blur
- Undoing the blur maximizes cross-scale similarity
- State-of-the art, robust blind-deblurring
- Image specific prior

- Deviations from ideal patch recurrence
 → cue for recovering the blur
- Undoing the blur maximizes cross-scale similarity
- State-of-the art, robust blind-deblurring
- Image specific prior

