

Pseudo-Bound Optimization for Binary Energies

Presenter: **Meng Tang** Joint work with

Ismail Ben Ayed

Labeling Problems in Computer Vision

Binary label

foreground selection

Multi-label

Geometric model fitting

Stereo

Semantic segmentation

Denoising inpainting

Energy Minimization for Labeling Problem

$$S^* = arg_s \min E(S)$$

$$s_p = 1$$
 (FG) or 0 (BG)

foreground selection

 s_{ρ} = 'sky' or 'road' or 'bike' etc.

Semantic segmentation

Basic Pairwise Energies

□ Submodular case: fast global solver (Graph Cuts) e.g. Boros & Hammer. 2002

Example: interactive segmentation

Boykov & Jolly. 2001

More difficult energies

Pairwise nonsubmodular energies **High-order energies** Entropy minimization for Curvature regularization image segments Segmentation with *repulsion* Matching target distribution **Binary image deconvolution** Volume constraints 🗖 e.t.c. Convex shape prior Roof duality [Boros & Hammer. 2002] Region Competition[Zhu, Lee & Yuille. 1995]

.....

Roof duality [Boros & Hammer. 2002] QPBO-mincut [Kolmogorov, Rother *et al*. 2007] TRWS, SRMP [Kolmogorov *et al*. 2006, 2014] Parallel ICM [Leordeanu *et al*. 2009]

.

Region Competition[Zhu, Lee & Yuille. 1995] GrabCut [Rother et al. 2004] [Vicente *et al*. 2009] [Gould *et al*. 2011, 2012][Kohli *et al*. 2007, 2009] [Ayed *et al*. 2010, 2013][Gorelick *et al*. 2013, 2014]

Our framework (Pseudo-Bound Opt.)

Pairwise nonsubmodular energies	High-order energies
 Curvature regularization Segmentation with <i>repulsion</i> Binary image deconvolution e.t.c. 	 Entropy minimization for image segments Matching target distribution Volume constraints Convex shape prior
Roof duality [Boros & Hammer. 2002] QPBO-mincut [Kolmogorov, Rother <i>et al</i> . 2007] TRWS, SRMP [Kolmogorov <i>et al</i> . 2006, 2014] Parallel ICM [Leordeanu <i>et al</i> . 2009] 	Region Competition[Zhu, Lee & Yuille. 1995] GrabCut [Rother et al. 2004] [Vicente <i>et al</i> . 2009] [Gould <i>et al</i> . 2011, 2012][Kohli <i>et al</i> . 2007, 2009] [Ayed <i>et al</i> . 2010, 2013][Gorelick <i>et al</i> . 2013, 2014]

Example of high-order energy

□ With known appearance models θ_0, θ_1 . Boykov & Jolly. 2001

$$E(S \mid \theta_0, \theta_1) = \sum_{p \in \Omega} -\ln \Pr(I_p \mid \theta_{sp}) + \sum_{pq \in N} w_{pq} \cdot [s_p \neq s_q]$$

fixed

Appearance models can be optimized

GrabCut [Rother et al. 2004]

$$E(S, \theta_0, \theta_1) = \sum_{p \in \Omega} -\ln \Pr(I_p \mid \theta_{Sp}) + \sum_{pq \in N} w_{pq} \cdot [s_p \neq s_q]$$

variables

From model fitting to **entropy** optimization:

[Delong et al, IJCV 2012] [Tang et al. ICCV 2013]

mixed optimization $E(S,\theta_0,\theta_1) = \sum_{p:S_p=0} -\ln \Pr(I_p/\theta_0) + \sum_{p:S_p=1} -\ln \Pr(I_p/\theta_1) + \sum_{pq\in N} w_{pq} \cdot [s_p \neq s_q]$ $|\overline{S}| \cdot H(\overline{S} | \theta_{o})$ $|S| \cdot H(S|\theta_1)$ min cross-entropy entropy θ_0, θ_1 Note: $H(P/Q) \ge H(P)$ for any two distributions entropy of _____ entropy of intensities in Sintensities in Sbinary optimization $|S| \cdot H(S) + \sum w_{pq} \cdot [s_p \neq s_q]$ $|\overline{S}| \cdot H(\overline{S})$ E(S)+ = $pq \in N$ high-order energy

common energy for *categorical clustering*, e.g. [Li *et al*. ICML'04] *Decision Forest Classification*, e.g. [Criminisi & Shotton. 2013] _{8/27}

Energy example: *color entropy*

$|\overline{S}| \cdot H(\overline{S}) + |S| \cdot H(S)$

Pseudo-bound optimization example: minimize our **entropy**-based energy E(S)

$$E(S) = |\overline{S}| \cdot H(\overline{S}) + |S| \cdot H(S) + \sum_{pq \in N} w_{pq} \cdot [s_p \neq s_q]$$

one standard approach: Block-Coordinate Descent (BCD)

GrabCut [Rother et al. 2004]

mixed var. energy

E(S)our entropy energy

BCD could be seen as **bound optimization** for **entropy**

Bound optimization, in general

(Majorize-Minimize, Auxiliary Function, Surrogate Function)

Local minima examples (for GrabCut)

 $E=1.410\times10^{6}$

 $E=1.39\times10^{6}$

 $E=2.41\times10^{6}$

E=2.37×10⁶

Bound

$A_t(S)$

Bounds

Bound

Bounding relaxation

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$

Bound Bounding relaxation $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$

Pairwise Submodular

Unary

Bound Bounding relaxation $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unary a cut edge capacities depend linearly on λ . Gallo et al. 1989 link Parametric Max-flow Hochbaum et al. 2010 Kolmogorov et al. 2007

Bound Bounding relaxation $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$

Pairwise Submodular

Unary

Bound Bounding relaxation $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unarv

 $S^{\lambda} = \min_{s} F_{t}(S, \lambda)$

16/27

Parametric Pseudo-Bounds Cuts (pPBC)

Parametric Pseudo-Bounds Cuts (pPBC)

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unary

$$E(S) = |\overline{S}| \cdot H(\overline{S}) + |S| \cdot H(S) + \sum_{pq \in N} w_{pq} \cdot [s_p \neq s_q]$$

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unarv

How to choose auxiliary and bound relaxation functions?

$$E(S) = |\overline{S}| \cdot H(\overline{S}) + |S| \cdot H(S) + \sum_{pq \in N} w_{pq} \cdot [s_p \neq s_q]$$

 $F_t(S,\lambda) = E(S/\theta_0^t, \theta_1^t) + \lambda(|S| - |S_t|)$

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unary

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unary

How to choose auxiliary and bound relaxation functions?

High-order example:

Soft volume constriants

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unary

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$

Pairwise Submodular

۲ Unary

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$

Pairwise Submodular

Unary

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unary

 $F_t(S,\lambda) = A_t(S) + \lambda R_t(S)$ Pairwise Submodular Unary

How to choose auxiliary and bound relaxation functions?

Gorelick et al. in CVPR 2014

EXPERIMENTAL RESULTS

Experiment results (high-order)

Interactive segmentation (entropy minimization)

Experiment results (high-order)

Interactive segmentation (GrabCut database)

Experiment results (high-order) Unsupervised binary segmentation – without prior (bounding box, appearance etc.)

Matching appearance distribution

Input image

Ground truth

Our method

Experiment results (high-order) Matching color distribution

			KL divergence			Bhattacharyya distance		
		Method	Mean energy	Mean error	Time	Mean energy	Mean error	Time
	Ayed et al. 2013	Auxiliary Cuts	6189	16.54%	1.8s	-12402	24.1%	1.7s
		$pPBC(\lambda \le 0)$	6150	14.88%	N/A	-12451	23.7%	N/A
e	orelick et al. 2013	FTR	5868	7.70%	4.40s	-14499	3.2%	2.71s
		$\mathrm{pPBC}(\lambda \in [-\infty, +\infty])$	5849	3.63%	2.98s	-14504	2.9%	1.99s

Experiment results (pairwise)

Segmentation with curvature regularization

*Submodularization for Binary Pairwise Energies, Gorelick et al. in CVPR 2014

General optimization framework for highorder and pairwise binary energy minimization

General optimization framework for highorder and pairwise binary energy minimization

Optimize pseudo-bounds efficiently with parametric maxflow

- General optimization framework for highorder and pairwise binary energy minimization
- Optimize pseudo-bounds efficiently with parametric maxflow
- BCD as in GrabCut is a bound optimization

- General optimization framework for highorder and pairwise binary energy minimization
- Optimize pseudo-bounds efficiently with parametric maxflow
- BCD as in GrabCut is a bound optimization
- Several options of pseudo-bounds

- General optimization framework for highorder and pairwise binary energy minimization
- Optimize pseudo-bounds efficiently with parametric maxflow
- BCD as in GrabCut is a bound optimization
- Several options of pseudo-bounds
- Achieve state-of-the-art for many binary energy minimization problems

- General optimization framework for highorder and pairwise binary energy minimization
- Optimize pseudo-bounds efficiently with parametric maxflow
- BCD as in GrabCut is a bound optimization
- Several options of pseudo-bounds
- Achieve state-of-the-art for many binary energy minimization problems
 Code available: <u>www.csd.uwo.ca/~mtang73</u>

- General optimization framework for highorder and pairwise binary energy minimization
- Optimize pseudo-bounds efficiently with parametric maxflow
- BCD as in GrabCut is a bound optimization
- Several options of pseudo-bounds
- Achieve state-of-the-art for many binary energy minimization problems
 Code available: <u>www.csd.uwo.ca/~mtang73</u>