Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model

Bo Li^{1,2}

Tianfu Wu²

Song-Chun Zhu²

¹Beijing Institute of Technology ²University of California, Los Angeles (UCLA)

Car Detection

E.g., in PASCAL VOC -- not much occlusion (D. Hoiem et al., ECCV 2012)

Occlusion and Car-to-Car Context in Car Detection

KITTI

(A. Geiger et al., CVPR2012)

Street Parking (B. Li et al., ICCV 2013)

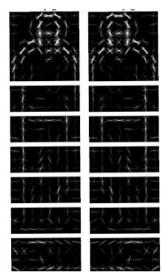
Parking Lot

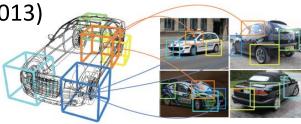
(self-collected in this paper)

Literature Review

• Single Object Model & Occlusion Modeling

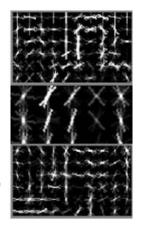
- Felzenszwalb et al., TPAMI (2010)
- Girshick et al., In: NIPS (2011)
- Zhu et al., In: CVPR (2010)
- Pepik et al., In: CVPR (2012) & CVPR (2013)
- Li et al, In: ICCV (2013)
- Song et al., In: CVPR (2013)

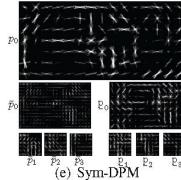


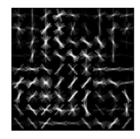


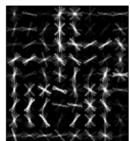
Literature Review

- Single Object Model & Occlusion Modelling
 - Felzenszwalb et al., TPAMI (2010)
 - Girshick et al., In: NIPS (2011)
 - Zhu et al., In: CVPR (2010)
 - Pepik et al., In: CVPR (2012) & CVPR (2013)
 - Li et al, In: ICCV (2013)
 - Song et al., In: CVPR (2013)
- Object-Pair & Visual Phrase Models
 - Li et al., PR (2014)
 - Tang et al., In: BMVC (2012)
 - Ouyang, W. & Wang, X., In: CVPR (2013)
 - Pepik et al., In: CVPR (2013)
 - Sadeghi, M. & Farhadi, A., In: CVPR (2011)









person_riding_bicycle

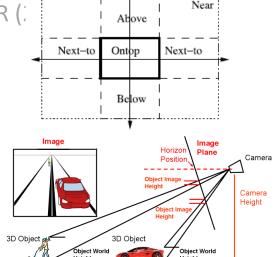
person_riding_horse

Literature Review

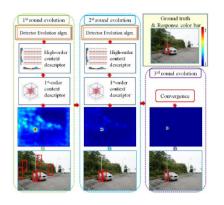
- Single Object Model & Occlusion Modelling
 - Felzenszwalb et al., TPAMI (2010)
 - Girshick et al., In: NIPS (2011)
 - Zhu et al., In: CVPR (2010)
 - Pepik et al., In: CVPR (2012) & CVPR (2013)
 - Li et al, In: ICCV (2013)
 - Song et al., In: CVPR (2013)
- Object-Pair & Visual Phrase Models
 - Li et al., PR 47, 3254 3264 (2014)
 - Tang et al., In: BMVC (2012)
 - Ouyang, W. & Wang, X., In: CVPR (2013)
 - Pepik et al., In: CVPR (2013)
 - Sadeghi, M. & Farhadi, A., In: CVPR (2

Context Model

- Hoiem et al., IJCV (2008)
- Desai et al., IJCV (2011)
- Tu, Z. & Bai, X., TPAMI (2010)
- Chen et al., In: CVPR (2013)
- Yang et al., In: CVPR (2012)

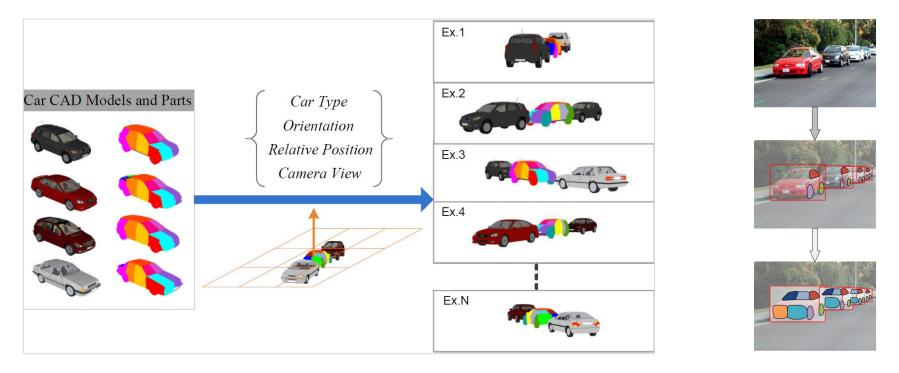


Far



Regularity and Reconfigurability

from the object detection grammar perspective



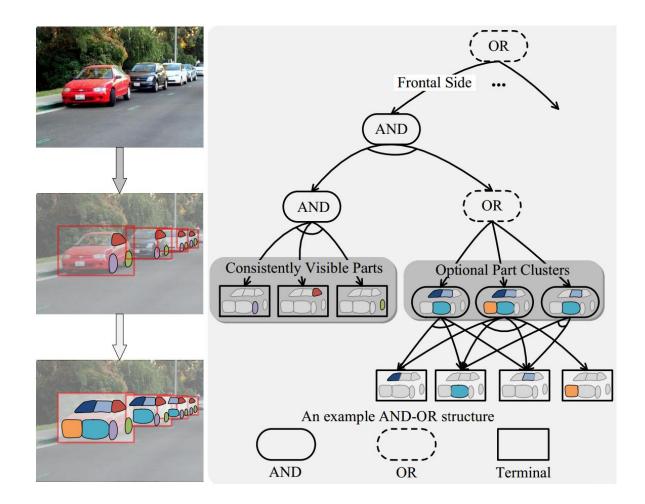
1, Occlusions have different regularities (e.g., consistently visible parts for a given viewpoint).

2, Car-to-car layouts (i.e., N-car together) with reconfigurable single cars and car parts can address the intra-class variations caused by occlusions.

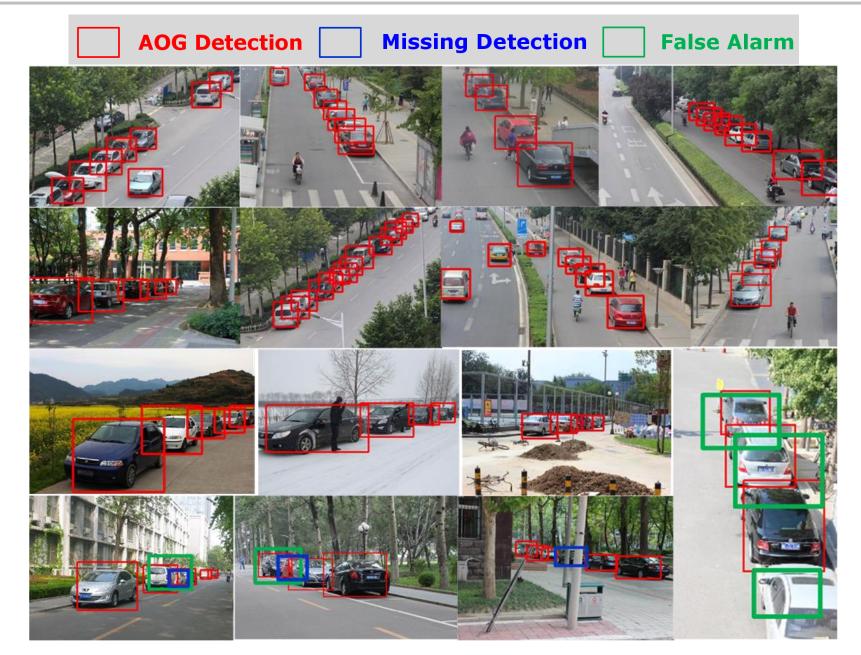
Modeling Occlusion by Discriminative And-Or Structures

B. Li et al., ICCV 2013

S.C. Zhu and D. Mumford, FTCGV 2006

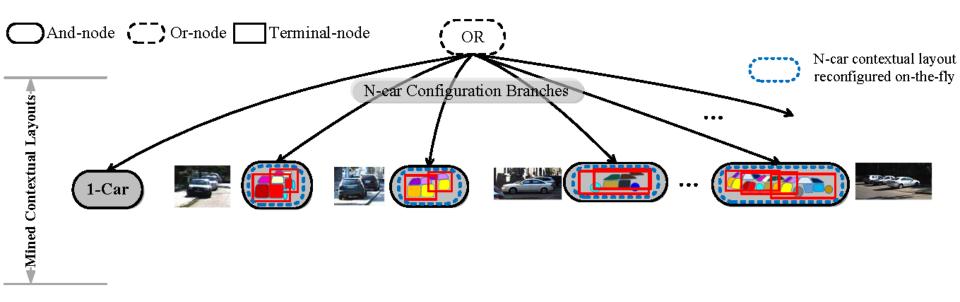


Results on Street-Parking-Car Dataset



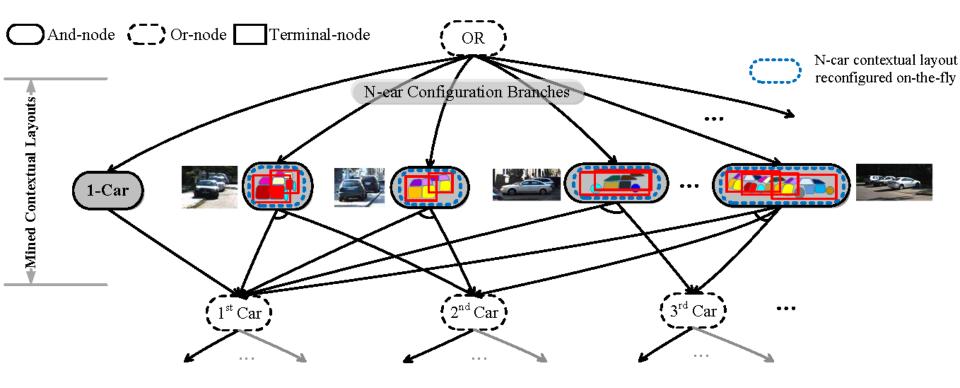
Integrating Occlusion and Context

Representation: Hierarchical and Reconfigurable And-Or Models

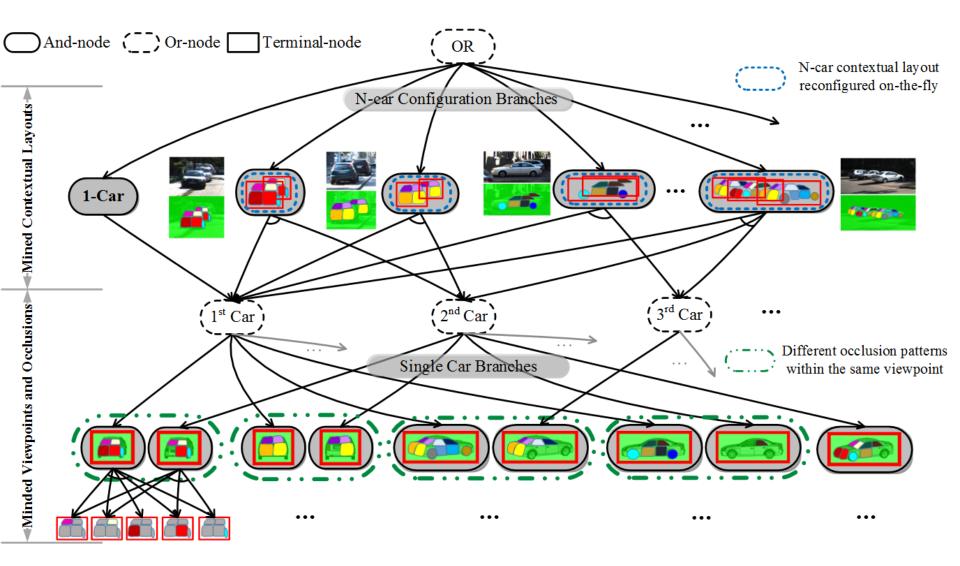


Car-to-Car Context:

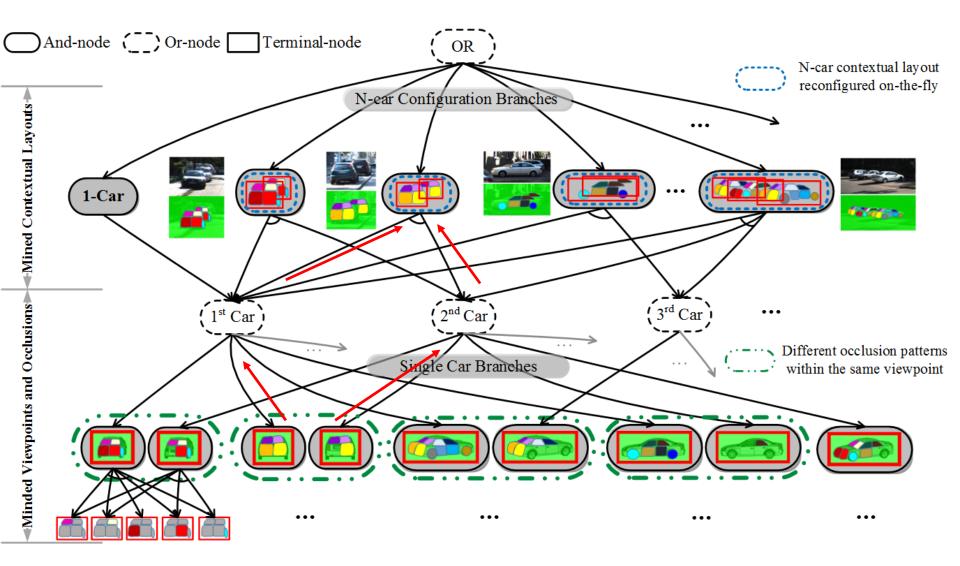
Representation: Hierarchical and Reconfigurable And-Or Models



Representation: Hierarchical and Reconfigurable And-Or Models

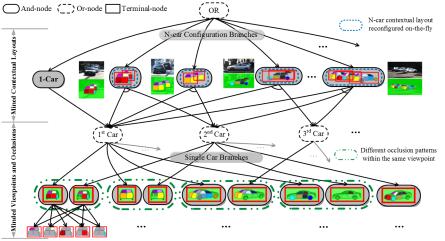


Representation: Hierarchical and Reconfigurable And-Or Models

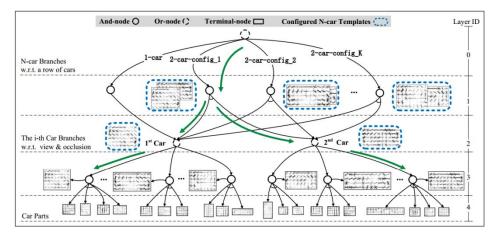


Integrating Occlusion and Context

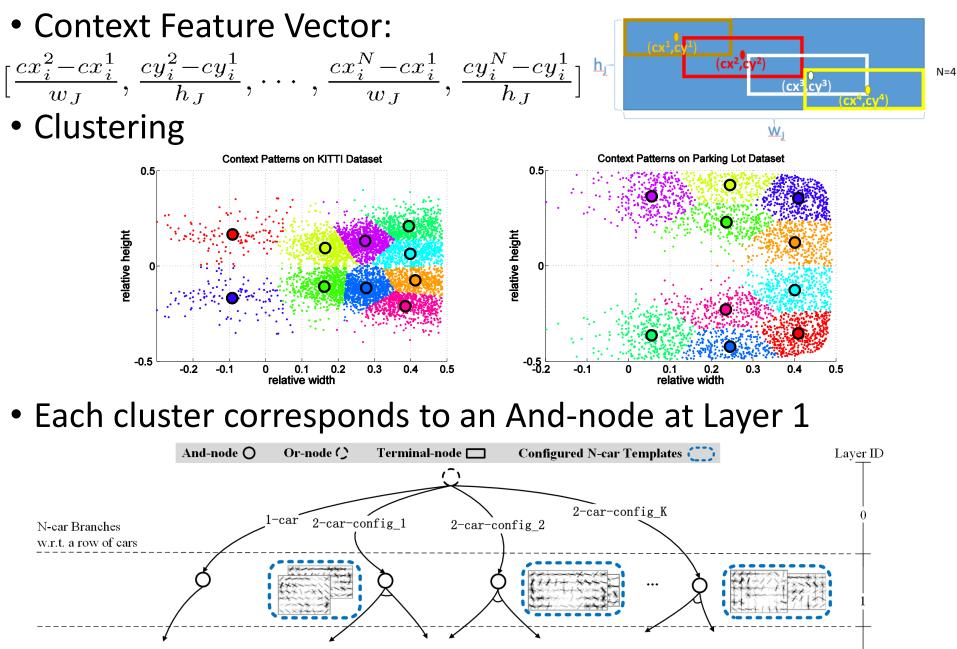
(1) Learning the And-Or Structure by mining car-to-car context patterns and viewpoint-occlusion patterns



(2) Learning the parameters for appearance, deformation and bias

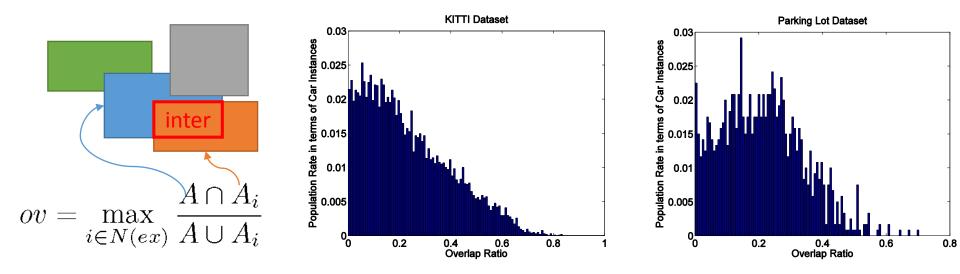


Learning : Mining Car-to-Car Context Patterns



Learning : Mining viewpoint-occlusion Patterns

• For a single car example, we use the maximum overlap ratio between it and its neighbor cars as its occlusion ratio



- Two methods to model occlusion patterns
 - Greedy part selection (Felzsenszwalb, et al., PAMI 2010)
 - And-Or Structure Learning

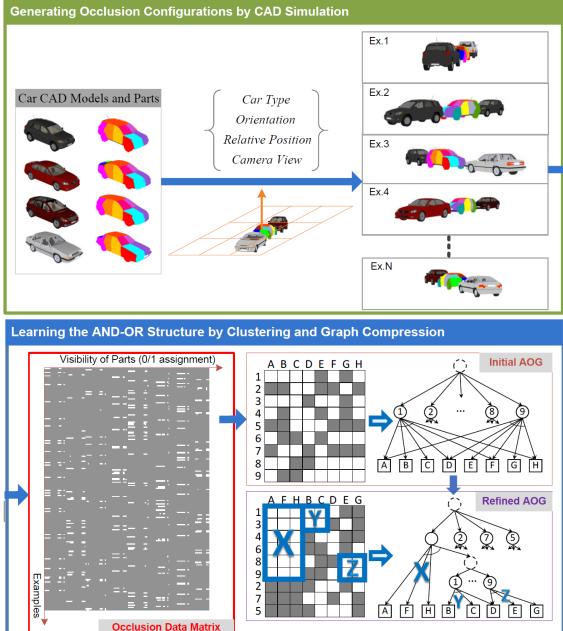
And-Or Structure Learning

Generating CAD Examples & Building Data Matrix

Information projection & Graph Compression

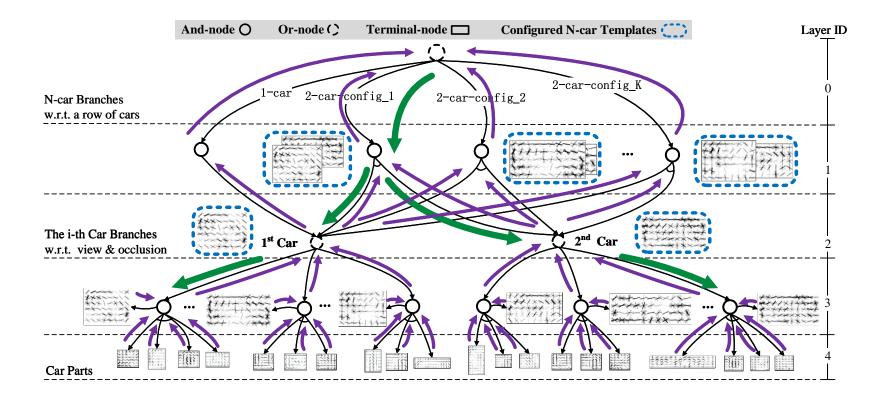
$$\min \sum_{i}^{N} |v_i - v_i(AOT)|_2^2 + \lambda |AOT|$$

Z. Si & S.C. Zhu., TPAMI (2013)



Inference : the DP algorithm

- Bottom-up Pass Depth-First-Search
 - Compute appearance & deformation score maps for And-Or nodes
- Top-down Pass Breadth-First-Search
 - Retrieve parse trees with scores above the threshold



Parameters Learning

• Weak-Label Structural SVM (WLSSVM) Girshick et al., In: NIPS (2011)

$$\mathcal{E}(\Theta) = \frac{1}{2} \|\Theta\|^2 + C \sum_{i=1}^M L'(\Theta, x_i, y_i)$$

$$L'(\Theta, x, y) = \max_{pt \in \Omega_{\mathcal{G}}} [score(x, pt; \Theta) + L_{margin}(y, box(pt))] - \max_{pt \in \Omega_{\mathcal{G}}} [score(x, pt; \Theta) - L_{output}(y, box(pt))]$$

$$L_{\ell,\tau}(y, box(pt)) = \begin{cases} \ell & \text{if } y = \bot \text{ and } \text{pt} \neq \bot \\ 0 & \text{if } y = \bot \text{ and } \text{pt} = \bot \\ \ell & \text{if } y \neq \bot \text{ and } \exists \ B \in y \text{ with } ov(B, B') < \tau, \forall B' \in box(pt) \\ 0 & \text{if } y \neq \bot \text{ and } ov(B, B') \geq \tau, \forall \ B \in y \text{ and } \exists B' \in box(pt) \end{cases},$$

1) During learning, we run the DP inference to find the optimal parse tree

2) For a N-car example, the loss function is enforced to consider N car bounding boxes together

Experimental Results

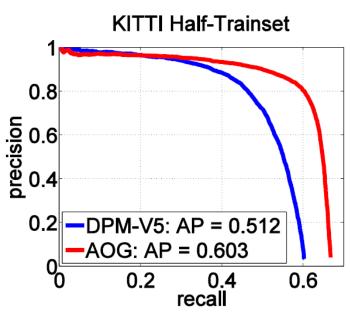
- Public Datasets
 - KITTI, Street Parking, Pascal VOC 2007
- Self-collected Parking Lot Dataset
 - More Cars per Image
 - More Car-to-Car Context
 - More Occlusion
 - More Diverse Viewpoints

Results: KITTI & Pascal VOC 2007

 Training and Testing by Splitting the Trainset

 Training on Half-Trainset, and Testing on the benchmark

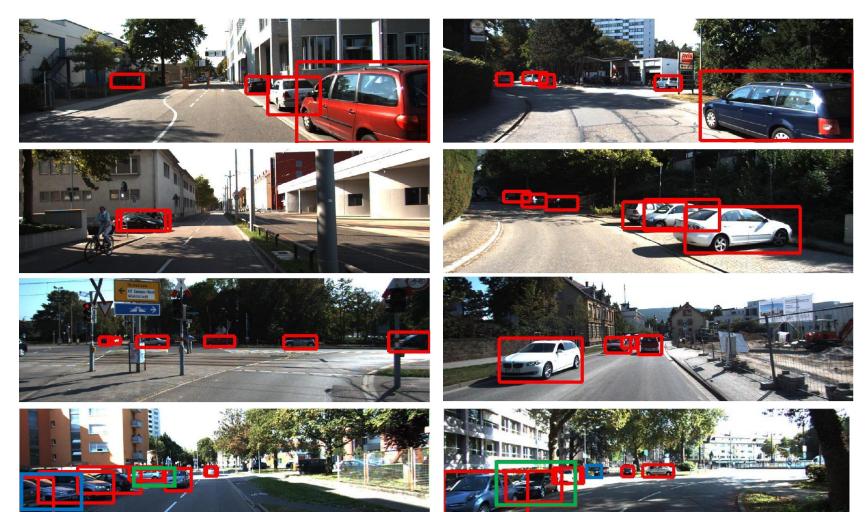
Methods	Easy	Moderate	Hard			
mBoW	36.02%	23.76%	18.44%			
LSVM-MDPM-us	66.53%	55.42%	41.04%			
LSVM-MDPM-sv	68.02%	56.48%	44.18%	Pascal VOC 2007		
MDPM-un-BB	71.19%	62.16%	48.43%		DPM [14]	AOG
OC-DPM	74.94%	65.95%	53.86%	AP	58.2%	60.6%
DPM (trained by us)	77.24%	56.02%	43.14%			
AOG	80.26%	67.03%	55.60%			



Results: KITTI

Missing Detection True Positive

False Alarm



Results: Street Parking

• Quantitative Results

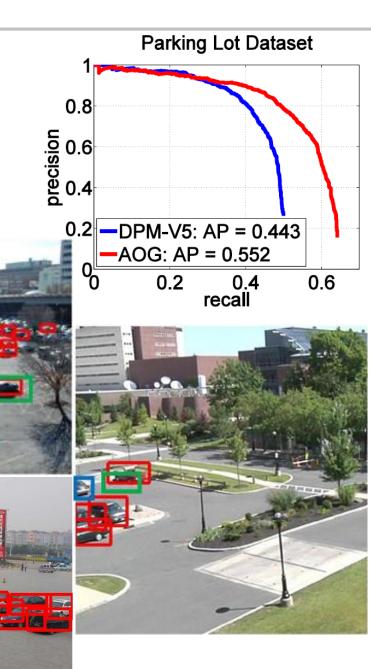
	DPM-V5	And-Or Structure	Our AOG ¹	Our AOG ²
AP	52.0%	57.8%	62.1%	65.3%

• Qualitative Results

• Part Layouts

Results: Parking Lot

- Evaluation Settings
 - Overlap threshold: 0.60
 - Minimum area: 1000
 - minimum height: 24
- Qualitative Results



Conclusion

- A flexible & reconfigurable And-Or model
- Mine context and occlusion patterns
- A new parking lot dataset

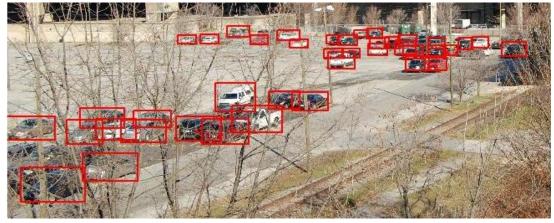
- Future Work
 - Apply on other categories
 - New ways to mine context & occlusion pattern
 - Integrating other context cues

Thank you! And Questions?

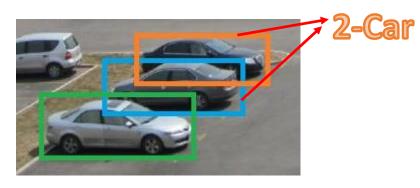
Poster: P4B-46

The code and data will be available on the following project page: http://www.stat.ucla.edu/~tfwu/project/OcclusionModeling.htm

Learning : Generating N-car Positive Samples



• N = 2



• N = 3 2-Car 3-Car $\sqrt{100}$

• N = 4, ...

Generating N-car Positive Sample

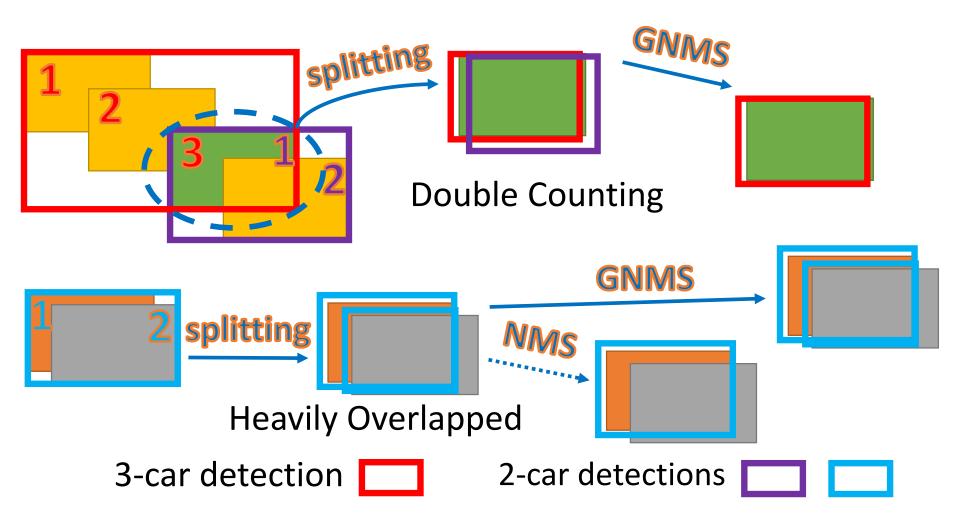
For N > 2, the algorithm is similar

input : (N-1)-car positive samples: $D^+_{(N-1)-car} =$ $\{(I_1, \mathbb{B}_{K_1}), \cdots, (I_m, \mathbb{B}_{K_m})\},\$ $|K_l| = N - 1, l \in \{1, \cdots, m\}$ **output**: N-car positive samples: $D_{N-car}^+ =$ $\{(I_i, B_i^J); k_i > N, J \subseteq [1, k_i], |J| = N, B_i^J \subseteq \mathbb{B}_i, i \in [1, n] \}$ for $i \leftarrow 1$ to n do select the *i*-th training image; for $u \leftarrow 1$ to m do $K \leftarrow K_{u}$: set B_i^K as the seed; set j = 1, maxov = 0; for each elem $k \in K$ do find B_i^v with $v = \operatorname{argmax}_{s \in \mathcal{N}_{B_i^k}} ov(B_i^s, B_i^k);$ if $maxov < ov(B_i^k, B_i^v)$ then $maxov \leftarrow ov(B_i^k, B_i^v), j = v;$ end add $(I_i, B_i^{K \cup \{j\}})$ to D_{N-car}^+ end end

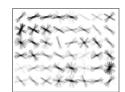
Algorithm 2: Generating N-car (N > 2) positive examples

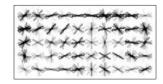
Post-processing

• N-car guided non-maximum suppression (GNMS)



Reconfigurable Context Patterns Single Car Templates





Configured Car-to-Car Context

