Crisp Boundary Detection Using
Pointwise Mutual Information

Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward Adelson
MIT



Human drawn contours
Original image (Martin et al. 2004)

Goal: Find boundaries between image regions in
a way that mimics human performance.



Sobel & Feldman
1968

A -, How do you find a boundary?

Pointwise
Arbelaez et al. Dollar & Zitnick mutual

2011 (gPb) 2014 (Structured Edges) information
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Find a change in
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Find a change Recognize Look for a
color/texture familiar patches statistical
dissociation
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Key observation:

Pixels belonging to the same object have higher

statistical association than pixels belonging to
different objects.
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Luminance B

4.65

Luminance A

P(A, B) = how often each color A occurs next to each color B
within this image.



Luminance A

Pointwise mutual information (PMI)

P(A, B)?
P(A)P(B)

PMI, (A, B) = log

Use PMI as affinity measure for affinity-based pixel grouping.
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s PMI informative about object boundaries”
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s PMI informative about object boundaries”

Yes!
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PMI leverages internal image statistics
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Algorithm



Algorithm outline

1. Get affinity between pixel pairs using PM| — our contribution

2. Apply aftinity-based boundary detection — standard techniques
(Arbelaez et al. 2011, gPb)
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Step 1: Estimate feature co-occurrence distribution P(A, B)
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Step 2: Derive PMI(A,B) from feature co-occurrence distribution

PMI(A,B)
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PMI, (A, B) = log
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Step 3: Use PMI as affinity between each pair of nearby pixels
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Step 3: Use PMI as affinity between each pair of nearby pixels

Affinity
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Step 4: Group pixels based on affinity (spectral clustering)

Boundaries Segments

17 Arbelaez et al. 2011



Results
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Precision

Pertormance on BSDS500
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Works on diverse stimuli

phone photo '
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Boundary detection in XY'T
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summary

Pointwise mutual information is a powerful
affinity measure, with applications to
boundary detection and segmentation.

't Is unsupervised and relies entirely on
simple internal image statistics.
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Code available:

boundaries = findBoundaries(I);

mit.edu/pmi-boundaries



http://mit.edu/pmi-boundaries

