

Crisp Boundary Detection Using Pointwise Mutual Information

Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward Adelson MIT

Original image

(Martin et al. 2004)

Goal: Find boundaries between image regions in a way that mimics human performance.

How do you find a boundary?

Key observation: Pixels belonging to the same object have higher statistical association than pixels belonging to different objects.

$P(A, B)=$ how often each color A occurs next to each color B within this image.

Pointwise mutual information (PMI)

$$
\operatorname{PMI}_{\rho}(A, B)=\log \frac{P(A, B)^{\rho}}{P(A) P(B)}
$$

Use PMI as affinity measure for affinity-based pixel grouping.

Is PMI informative about object boundaries?

Is PMI informative about object boundaries?

PMI leverages internal image statistics

Internal statistics

External statistics

Algorithm

Algorithm outline

1. Get affinity between pixel pairs using PMI - our contribution
2. Apply affinity-based boundary detection - standard techniques
(Arbeláez et al. 2011, gPb)

Step 1: Estimate feature co-occurrence distribution $P(A, B)$

Samples

Step 2: Derive $\operatorname{PMI}(A, B)$ from feature co-occurrence distribution

$\operatorname{PMI}(A, B)$

$$
\operatorname{PMI}_{\rho}(A, B)=\log \frac{P(A, B)^{\rho}}{P(A) P(B)}
$$

Step 3: Use PMI as affinity between each pair of nearby pixels

Step 3: Use PMI as affinity between each pair of nearby pixels

Step 4: Group pixels based on affinity (spectral clustering)

Segments

Results

$$
\frac{1}{20}
$$

Performance on BSDS500

> ODS: $\mathbf{0 . 7 4}$ OIS: $\mathbf{0 . 7 7}$ AP: $\mathbf{0 . 8 0}$

Works on diverse stimuli

Cellphone photo

Satellite imagery

Art

Boundary detection in XYT

Summary

Pointwise mutual information is a powerful affinity measure, with applications to boundary detection and segmentation.

It is unsupervised and relies entirely on simple internal image statistics.

Code available:

boundaries = findBoundaries(I);

mit.edu/pmi-boundaries

