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Arbeláez et al.  
2011 (gPb) 

Dollár & Zitnick  
2013 (SE) Our method Human labelersSobel & Feldman 
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2013 (SE) Our method Human labelersHuman drawn contours

Goal: Find boundaries between image regions in 
a way that mimics human performance.

(Martin et al. 2004)
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How do you find a boundary?
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Find a change in 
luminance

Sobel & Feldman 
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Find a change  
color/texture
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 1968
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2013 (SE) Our method Human labelers

Sobel & Feldman 
 1968

Arbeláez et al.  
2011 (gPb) 

Dollár & Zitnick  
2013 (SE) Our method Human labelers

Pointwise 
mutual 

information

Look for a 
statistical 

dissociation

Dollár & Zitnick  
2014 (Structured Edges)

Recognize 
familiar patches



Pixels belonging to the same object have higher 
statistical association than pixels belonging to 
different objects.

Key observation: 
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Fig. 2: Our algorithm works by reasoning about the pointwise mutual information
(PMI) between neighboring image features. Middle column: Joint distribution of the
luminance values of pairs of nearby pixels. Right column: PMI between the luminance
values of neighboring pixels in this zebra image. In the left image, the blue circle
indicates a smooth region of the image where all points are on the same object. The
green circle a region that contains an object boundary. The red circle shows a region
with a strong luminance edge that nonetheless does not indicate an object boundary.
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Fig. 2: Our algorithm works by reasoning about the pointwise mutual information
(PMI) between neighboring image features. Middle column: Joint distribution of the
luminance values of pairs of nearby pixels. Right column: PMI between the luminance
values of neighboring pixels in this zebra image. In the left image, the blue circle
indicates a smooth region of the image where all points are on the same object. The
green circle a region that contains an object boundary. The red circle shows a region
with a strong luminance edge that nonetheless does not indicate an object boundary.
Luminance pairs chosen from within each circle are plotted where they fall in the joint
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log P(A,B)

how often each color A occurs next to each color B 
within this image.

P (A,B) =

5
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Now consider the pair in the red circle. There is no physical object boundary
on the edge of this zebra stripe. However, the joint probability is actually lower
for this pair than for the pair in the green circle, where an object boundary
did in fact exist. This demonstrates a shortcoming of using joint probability as
a measure of a�nity. Because there are simply more green pixels in the image
than white pixels, there are more chances for green accidentally show up next to
any arbitrary other color – that is, the joint probability of green with any other
color is inflated by the fact that most pixels in the image are green.

In order to correct for the baseline rarity of features A and B, we instead
model a�nity with a statistic related to pointwise mutual information:

PMI⇢(A, B) = log
P (A, B)⇢

P (A)P (B)
. (3)

When ⇢ = 1, PMI⇢ is precisely the pointwise mutual information between A and
B [25]. This quantity is the log of the ratio between the observed joint probability
of {A, B} in the image and the probability of this tuple were the two features

independent. Equivalently, the ratio can be written as P (A|B)
P (A) , that is, how much

more likely is observing A given that we saw B in the same local region, compared
to the base rate of observing A in the image. When ⇢ = 2, we have a stronger
condition: in that case the ratio in the log becomes P (A|B)P (B|A). That is,
observing A should imply that B will be nearby and vice versa. As it is unclear
a priori which setting of ⇢ would lead to the best segmentation results, we instead
treat ⇢ as a free parameter and select its value to optimize performance on a
training set of images (see Section 4).

In the right column of Figure 2, we see the pointwise mutual information over
features A and B. This metric appropriately corrects for the baseline rarities of
white and black pixels versus gray and green pixels. As a result, the pixel pair
between the stripes (red circle), is rated as more strongly mutually informative
than the pixel pair that straddles the boundary (green circle). In Section 6.1 we
empirically validate that PMI⇢ is indeed predictive of whether or not two points
are on the same object.

4 Learning the a�nity function

In this section we describe how we model P (A, B), from which we can derive
PMI⇢(A, B). For each image on which we wish to measure a�nities, we learn
P (A, B) specific to that image itself. Extensions of our approach could learn
P (A, B) from any type of dataset: videos, photo collections, images of a specific
object class, etc. However, we find that modeling P (A, B) with respect to the
internal statistics of each test image is an e↵ective approach for unsupervised
boundary detection. The utility of internal image statistics has been previously
demonstrated in the context of super-resolution and denoising [29] as well as
saliency prediction [30].

Because natural images are piecewise smooth, the empirical distribution
P (A, B) for most images will be dominated by the diagonal A ⇡ B (as in Fig-
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Fig. 2: Our algorithm works by reasoning about the pointwise mutual information
(PMI) between neighboring image features. Middle column: Joint distribution of the
luminance values of pairs of nearby pixels. Right column: PMI between the luminance
values of neighboring pixels in this zebra image. In the left image, the blue circle
indicates a smooth region of the image where all points are on the same object. The
green circle a region that contains an object boundary. The red circle shows a region
with a strong luminance edge that nonetheless does not indicate an object boundary.
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luminance values of pairs of nearby pixels. Right column: PMI between the luminance
values of neighboring pixels in this zebra image. In the left image, the blue circle
indicates a smooth region of the image where all points are on the same object. The
green circle a region that contains an object boundary. The red circle shows a region
with a strong luminance edge that nonetheless does not indicate an object boundary.
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Pointwise mutual information (PMI)

Use PMI as affinity measure for affinity-based pixel grouping.
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PMI leverages internal image statistics
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Fig. 4. Here we show the probability that two nearby pixels are on the same object
segment as a function of various cues based on the pixel colors A and B. From left
to right the cues are: (a) color di↵erence, (b) color co-occurrence probability based on
internal image statistics, (c) PMI based on external image statistics, (d) PMI based on
internal image statistics, and (e) theoretical upper bound using the average labeling of
N�1 human labelers to predict the Nth. Color represents number of samples that make
up each datapoint. Shaded error bars show three times standard error of the mean.
Performance is quantified by treating each cue as a binary classifier (with variable
threshold) and measuring AP and maximum F-measure for this classifier (sweeping
over threshold).

multiscale angular embedding algorithm of [35]. This algorithm solves the spec-
tral clustering problem while enforcing that the edges at one scale are blurred
versions of the edges at the next scale up.

6 Experiments

In this section, we present the results of a number of experiments. We first show
that PMI is e↵ective in detecting object boundaries. Then we show benchmarking
results on the BSDS500 dataset. Finally, we show some segmentation results that
are derived using our boundary detections.

6.1 Is PMI⇢ informative about object boundaries?

Given just two pixels in an image, how well can we determine if they span an
object boundary? In this section, we analyze several possible cues based on a
pair of pixels, and show that PMI⇢ is more e↵ective than alternatives.

Consider two nearby pixels with colors A and B. In Figure 4 we plot the
probability that a random human labeler will consider the two pixels as lying
on the same object segment as a function of various cues based on A and B.

To measure this probability, we sampled 20000 nearby pairs of pixels per
image in the BSDS500 training set, using the same sampling scheme as in Section
4. For each pair of pixels, we also sample a random labeler from the set of human
labelers for that image. The pixel pair is considered to lie on the same object
segment if that labeler has placed them on the same segment.

A first idea is to use color di↵erence kA � Bk2 to decide if the two pixels
span a boundary (Figure 4(a); note that we use decorrelated L*a*b* color space
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Algorithm
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Algorithm outline

1. Get affinity between pixel pairs using PMI — our contribution 

2. Apply affinity-based boundary detection — standard techniques
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(Arbeláez et al. 2011, gPb)
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Step 1: Estimate feature co-occurrence distribution
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Now consider the pair in the red circle. There is no physical object boundary
on the edge of this zebra stripe. However, the joint probability is actually lower
for this pair than for the pair in the green circle, where an object boundary
did in fact exist. This demonstrates a shortcoming of using joint probability as
a measure of a�nity. Because there are simply more green pixels in the image
than white pixels, there are more chances for green accidentally show up next to
any arbitrary other color – that is, the joint probability of green with any other
color is inflated by the fact that most pixels in the image are green.

In order to correct for the baseline rarity of features A and B, we instead
model a�nity with a statistic related to pointwise mutual information:

PMI⇢(A, B) = log
P (A, B)⇢

P (A)P (B)
. (3)

When ⇢ = 1, PMI⇢ is precisely the pointwise mutual information between A and
B [25]. This quantity is the log of the ratio between the observed joint probability
of {A, B} in the image and the probability of this tuple were the two features

independent. Equivalently, the ratio can be written as P (A|B)
P (A) , that is, how much

more likely is observing A given that we saw B in the same local region, compared
to the base rate of observing A in the image. When ⇢ = 2, we have a stronger
condition: in that case the ratio in the log becomes P (A|B)P (B|A). That is,
observing A should imply that B will be nearby and vice versa. As it is unclear
a priori which setting of ⇢ would lead to the best segmentation results, we instead
treat ⇢ as a free parameter and select its value to optimize performance on a
training set of images (see Section 4).

In the right column of Figure 2, we see the pointwise mutual information over
features A and B. This metric appropriately corrects for the baseline rarities of
white and black pixels versus gray and green pixels. As a result, the pixel pair
between the stripes (red circle), is rated as more strongly mutually informative
than the pixel pair that straddles the boundary (green circle). In Section 6.1 we
empirically validate that PMI⇢ is indeed predictive of whether or not two points
are on the same object.

4 Learning the a�nity function

In this section we describe how we model P (A, B), from which we can derive
PMI⇢(A, B). For each image on which we wish to measure a�nities, we learn
P (A, B) specific to that image itself. Extensions of our approach could learn
P (A, B) from any type of dataset: videos, photo collections, images of a specific
object class, etc. However, we find that modeling P (A, B) with respect to the
internal statistics of each test image is an e↵ective approach for unsupervised
boundary detection. The utility of internal image statistics has been previously
demonstrated in the context of super-resolution and denoising [29] as well as
saliency prediction [30].

Because natural images are piecewise smooth, the empirical distribution
P (A, B) for most images will be dominated by the diagonal A ⇡ B (as in Fig-



Step 3: Use PMI as affinity between each pair of nearby pixels
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Step 3: Use PMI as affinity between each pair of nearby pixels



Input Boundaries

Step 4: Group pixels based on affinity (spectral clustering)

Segments
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[F = 0.74] Our method

Recall

Performance on BSDS500

ODS: 0.74!
OIS: 0.77!
AP: 0.80
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Works on diverse stimuli

Art

Satellite imagery

Cellphone photo
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Boundary detection in XYT
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Summary
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Pointwise mutual information is a powerful 
affinity measure, with applications to 
boundary detection and segmentation.  

It is unsupervised and relies entirely on 
simple internal image statistics.



Code available: 
!

boundaries = findBoundaries(I);!

!

mit.edu/pmi-boundaries
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Thanks!

http://mit.edu/pmi-boundaries

