

Crisp Boundary Detection Using Pointwise Mutual Information

Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward Adelson MIT

Goal: Find boundaries between image regions in a way that mimics human performance.

How do you

Find a change in luminance

Find a change color/texture Recognize familiar patches

Look for a statistical dissociation

Key observation: Pixels belonging to the same object have higher statistical association than pixels belonging to different objects.

P(A,B) = how often each color A occurs next to each color B within this image.

Pointwise mutual information (PMI)

$$PMI_{\rho}(A, B) = \log \frac{P(A, B)^{\rho}}{P(A)P(B)}$$

Use PMI as affinity measure for affinity-based pixel grouping.

Is PMI informative about object boundaries?

Is PMI informative about object boundaries?

PMI leverages internal image statistics

Algorithm

Algorithm outline

- 1. Get affinity between pixel pairs using PMI our contribution
- 2. Apply affinity-based boundary detection standard techniques (Arbeláez et al. 2011, gPb)

Step 1: Estimate feature co-occurrence distribution P(A, B)

Step 2: Derive PMI(A,B) from feature co-occurrence distribution

Step 3: Use PMI as affinity between each pair of nearby pixels

Step 3: Use PMI as affinity between each pair of nearby pixels

Step 4: Group pixels based on affinity (spectral clustering)

Input

Boundaries

Segments

Arbeláez et al. 2011

Results

Performance on BSDS500

ODS: **0.74** OIS: **0.77** AP: **0.80**

Works on diverse stimuli

Cellphone photo

Satellite imagery

Art

Boundary detection in XYT

Summary

Pointwise mutual information is a powerful affinity measure, with applications to boundary detection and segmentation.

It is unsupervised and relies entirely on simple internal image statistics.

Code available:

boundaries = findBoundaries(I);

mit.edu/pmi-boundaries

Thanks!