Progressive mode-seeking on graphs for sparse feature matching

Outline

- Introduction
 - Sparse Feature Matching
 - Motivation
- Proposed Method
 - Progressive Mode-seeking Algorithm (PMA)
 - Guided Graph Density
 - Density-aware Sampling
- Experiments
 - PMA vs. the state of the arts
- Limitations
- Conclusion

• Sparse feature matching

• Target

Sparse feature matching

Difficulties

Input image pair

2539 and 3013 features

All possible 2539*3013 matches

Only 281 true matches

Sparse feature matching

• Difficulties

- Sparse feature matching
 - Graph Matching:(Cho et al. 10)
 - Hyper-graph Matching:(Duchenne et al. 09)
 - Agglomerative clustering:(Cho et al. 09)
 - Graph shift:(Liu et al. 13)
 - Mode Seeking:(Cho et al. 12)

- Problem
 - Building an graph of $n_1 x n_2$ nodes is intractable
 - The candidate matches by SIFT include only a small portion of all the true matches.

How to detect true matches in the huge matching space?

- Problem
 - Progressive Graph Matching (PGM) (Cho et al. 12)
 - Tend to introduce many outliers
 - Fail for many-to-many object correspondences

• Graph matching: Integer Quadratic Programming (IQP)

$$G^{P} = (V^{P}, E^{P}, A^{P}) \qquad G^{Q} = (V^{Q}, E^{Q}, A^{Q})$$

Objective: $x^{*} = \arg \max_{x} x^{T} W x$
 $x \in \{0,1\}^{n^{P} n^{Q}} \qquad \forall i \sum_{a=1}^{n^{Q}} x_{ia} \leq 1 \qquad \forall a \sum_{i=1}^{n^{P}} x_{ia} \leq 1$
 $W_{ia;ia}$ represents a unary similarity of a match

 $W_{ia;jb}$ refers to a pair-wise similarity of two matches (v_i^P, v_a^Q) and (v_j^P, v_b^Q)

• Drawbacks of IQP: prefer more matches

 $x^* = \arg \max_x f(x) = \arg \max_x x^T W x$

Drawbacks of IQP: assumes a single cluster

Contribution of (v_l^P, v_m^Q) : $C(l, m) = x_{lm} (\sum_{i \neq l, a \neq m} W_{ia;lm} x_{ia} + \sum_{j \neq l, b \neq m} W_{lm;jb} x_{jb})$

- Mode-seeking
 - Few outliers

- Mode-seeking
 - Works well for many-to-many object correspondence

Solution

progressive mode-seeking

Guided Graph Density

Guided filter/Joint bilateral filter

Guided Graph Density

• An association graph including most true matches

Impact of the Guide Graph on Mode-seeking

Without the Guide Graph

With the Guide Graph

- Proposed method
 - Problem
 - Complexity: O((Zn₁)²)
 - Density-aware sampling: O(Zn₁m)
 - Sample m nodes according to graph density
 - Mode-seeking on m nodes
 - Map backwards from large graph to the m nodes

Experiments

- Large transformations and background clutters
 - ETHZ toys dataset

ACC: ECCV 2009, MSRW: ECCV 2010, PGM: CVPR 2012

Experiments

Many-to-many object correspondences

(b) Results by ACC on G^{I}

(c) Results by MSRW on G^I

(d) Results by PGM

(e) Our results

• Experiments

• Large intra-class variance

(b) Results by ACC on G^I

(c) Results by MSRW on G^I

(d) Results by PGM

(e) Our results

Limitations

- Constrained by SIFT feature matching
- Large smooth regions with little texture
- Tiny-sized objects with few features

- Conclusion
 - We go from PGM to PMA
 - Less outliers
 - Handle many-to-many object correspondences
 - Much faster

Thank you!