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• Sparse feature matching 
• Target 



 

• Sparse feature matching 
• Difficulties 

 

 

 

Input image pair 2539 and 3013 features 

All possible 2539*3013 matches Only 281 true matches 



 

• Sparse feature matching 
• Difficulties 



• Sparse feature matching 
 

– Graph Matching: 

(Cho et al. 10) 

 

– Hyper-graph Matching: 

(Duchenne et al. 09) 

 

– Agglomerative clustering: 

(Cho et al. 09) 

 

– Graph shift: 

(Liu et al. 13) 

 

– Mode Seeking: 

(Cho et al. 12) 



 

• Motivation 
• Problem 

• Building an graph of n1xn2 nodes is intractable 

• The candidate matches by SIFT include only a small 

portion of all the true matches. 

 

How to detect true matches in the huge matching space? 



 

• Motivation 
• Problem 

• Progressive Graph Matching (PGM) (Cho et al. 12) 

• Tend to introduce many outliers 

• Fail for many-to-many object correspondences 

 

 

 

Graph Matching Progression 

+ 



 

• Motivation 
• Graph matching: Integer Quadratic Programming (IQP) 
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• Motivation 
• Drawbacks of IQP: prefer more matches 
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• Motivation 
• Drawbacks of IQP: assumes a single cluster 
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• Motivation 

• Mode-seeking 

• Few outliers 

 

 

 

 

 



 

• Motivation 

• Mode-seeking 

• Works well for many-to-many object correspondence 



 

• Motivation 

• Solution 

 

 

 

 
Graph Matching Progression 
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Mode-seeking Mode-seeking 



 

• Proposed method 
• progressive mode-seeking 

 

 



 

• Proposed method 
• Guided Graph Density 

 

 

Guided filter/Joint bilateral filter 
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        Guided Graph Density 



 

• Proposed method 
• An association graph including most true matches  

 

 

                        Z=40 



 

• Proposed method 
• Impact of the Guide Graph on Mode-seeking 

 

 

Without the Guide Graph 

With the Guide Graph 



 

 

• Proposed method 

• Problem 
• Complexity: O((Zn1)

2) 

 

• Density-aware sampling: O(Zn1m) 

• Sample m nodes according to graph density 

• Mode-seeking on m nodes 

• Map backwards from large graph to the m nodes 

 

 

 



 

• Experiments 
• Large transformations and background clutters 

• ETHZ toys dataset 

 

 

ACC: ECCV 2009, MSRW: ECCV 2010, PGM: CVPR 2012 



 

• Experiments 
• Many-to-many object correspondences 



• Experiments 
• Large intra-class variance  

 



 

 

• Limitations 

• Constrained by SIFT feature matching 

• Large smooth regions with little texture 

• Tiny-sized objects with few features 

 

 



 

 

• Conclusion 

• We go from PGM to PMA 

– Less outliers 

– Handle many-to-many object correspondences 

– Much faster 

 

Thank you! 


