Two-view SfM Match selection Match refinement Match selection with match refinement Experiments Conclusion Additional

European Conference on Computer Vision

Match selection and refinement for highly accurate two-view SfM

Zhe Liu, Pascal Monasse, Renaud Marlet

Université Paris-Est, LIGM (UMR 8049), ENPC, F-77455 Marne-la-Vallée, France

ECCV 2014, September 8-11

Standard two-view Structure from Motion

Match Selection Quality vs quantity

Is using all inliers for F estimation the best thing to do?

- more matches with lower accuracy or
- less matches with higher accuracy

Goal: find large subset of most accurate matches \Rightarrow better SfM accuracy

Match Selection Correlation of errors to quality and quantity

Experiments on real dataset:

- varying quality: σ_{2D} , match localization error
- varying quantity: N, number of matches

- e_{3D}: 3D point location error
- e_R: camera rotation error
- e_t: camera translation error
- e_F: average epipolar error

Observations:

イロト イポト イヨト イヨト

 $\log(e_{3D}), \log(e_R), \log(e_t) \approx \alpha \log(\sigma_{2D}) - \beta \log(N)$ (1) with α and β depending on the match configuration $e_F \propto \sigma_{2D}$ (2)

4 / 22

Match Selection Comparing errors

$$e_{3D}, e_R, e_t \propto \frac{e_F^{lpha}}{N^{eta}}$$
 (3)

Knowing α/β is sufficient to compare errors:

$$\begin{array}{ll} e_{3D} < e_{3D}' \\ e_{R} < e_{R}' \\ e_{t} < e_{t}' \end{array} \quad \Leftrightarrow \quad \frac{e_{F}^{\ \alpha}}{N^{\beta}} < \frac{e_{F}'^{\ \alpha}}{N'^{\ \beta}} \quad \Leftrightarrow \quad \frac{e_{F}^{\ \alpha/\beta}}{N} < \frac{e_{F}'^{\ \alpha/\beta}}{N'} \qquad (4)$$

Thus, $M_{sub} \subset M$ is better than M if:

$$\frac{e_{\mathsf{F}}(M_{\rm sub})^{\alpha/\beta}}{|M_{\rm sub}|} < \frac{e_{\mathsf{F}}(M)^{\alpha/\beta}}{|M|} \tag{5}$$

Match Selection Comparing errors

Knowing a lower bound $\gamma \leq \alpha/\beta$ is enough to compare errors:

$$\frac{e_{\mathsf{F}}(M_{\rm sub})^{\gamma}}{|M_{\rm sub}|} < \frac{e_{\mathsf{F}}(M)^{\gamma}}{|M|} \quad \Rightarrow \quad \frac{e_{\mathsf{F}}(M_{\rm sub})^{\alpha/\beta}}{|M_{\rm sub}|} < \frac{e_{\mathsf{F}}(M)^{\alpha/\beta}}{|M|} \tag{6}$$

- $\alpha/\beta \ge 2$ almost consistently
- $\gamma = 2$ thus safe for most scenes
- $\alpha/\beta = 2$ theoretical value for homography case

Match Selection Exploring match subsets

Goal: find the optimal subset M_{sub}^* for estimating F

$$M_{\rm sub}^* = \underset{M_{\rm sub} \subset M}{\arg\min} \; \frac{e_F (M_{\rm sub})^{\gamma}}{|M_{\rm sub}|} \tag{7}$$

Problem: exploring all $M_{sub} \subset M$ is impractical

Our solution:

- score matches with some function $\phi: M \to \mathbb{R}$ (lower the better)
- sort matches according to ϕ : $i < j \Rightarrow \phi(m_i) < \phi(m_j)$
- consider N best matches $M_{ ext{sub}} = \{m_1, \dots, m_N\}$ for all $N \leq |M|$
- in fact consider only a few values for N (discrete fractions of |M|)

Match Selection Match ranking function

The choice of ϕ varies with the kind of feature.

For SIFT, match localization error correlates with:

- the scale of detected features
- the descriptor difference

Our choice:

$$\phi(\mathbf{x}, \mathbf{x}') = \max(\textit{scale}(\mathbf{x}), \textit{scale}(\mathbf{x}')) \times d(\textit{desc}(\mathbf{x}), \textit{desc}(\mathbf{x}')) \quad (8)$$

Two-view SfM Match selection Match refinement Match selection with match refinement Experiments Conclusion Additional

Match Selection Pipeline

KVLD: robust photometric matching method that removes most outliers before M is sub-sampled (Liu & Marlet, BMVC 2012)

Match Selection Conclusion for match selection

Is using all inliers for F estimation the best thing to do?

- more matches with lower accuracy or
- less matches with higher accuracy

Goal: find large subset of most accurate matches \Rightarrow better SfM accuracy

Match Refinement Least Square Matching (LSM)

$$A^* = \underset{A,f}{\arg\min} \sum_{x \in Patch} |I(x) - f \circ I' \circ A(x)|^2$$
(9)

with f(i) = ai + b linear radiometric adjustment

Match Refinement LSM extension

Least Square Focused Matching (LSFM):

- irregular sampling grid focused on patch center
- image scale exploration for robustness to local minima

Two-view SfM Match selection Match refinement Match selection with match refinement Experiments Conclusion Additional

Match Selection with Match Refinement Pipeline

Refinement before selection:

Match Selection with Match Refinement Match ranking function

Feature point location adjusted \Rightarrow no more correlation of errors with

イロト 不得下 イヨト イヨト 二日

14 / 22

- detection scale
- descriptor difference

Another scoring function ϕ required

New ϕ based on correlation of errors with

- dissimilarity of affine-transformed patches
- shearing of affinity

Experiments Average rotation and translation errors

Strecha et al.'s datasets: 95 image pairs (CVPR 2008)

std: RANSAC-like only MS: with match selection MR: with match refinement gain: std/(MR+MS)

$e_R (\text{deg} \times 10^{-2})$	std	MS	MR	MR+MS	gain
RANSAC	16.4	9.52	10.3	8.87	1.9
MSAC	14.1	9.53	8.86	8.43	1.7
LO-RANSAC	16.4	9.54	10.3	8.97	1.8
MLESAC	15.8	7.81	9.50	7.76	2.0
ORSA	12.2	7.24	6.48	6.60	1.9
e_t (deg)	std	MS	MR	MR+MS	gain
RANSAC	1.85	1.09	1.23	1.04	1.8
MSAC	1.59	1.08	1.03	0.96	1.6
LO-RANSAC	1.83	1.10	1.21	1.05	1.7
MLESAC	2.16	0.95	1.09	0.87	2.5
	1 20	0 01	0 60	0.74	10

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Experiments Average rotation and translation errors

> DTU robot datasets: 108 image pairs (Aanæs et al., IJCV 2012)

std: RANSAC-like only MS: with match selection MR: with match refinement gain: std/(MR+MS)

・ロト ・回ト ・ヨト ・ヨト

$e_R (\text{deg} \times 10^{-2})$	std	MS	MR	MR+MS	gain
RANSAC	26.5	22.3	21.5	21.3	1.2
MSAC	21.3	21.7	20.4	20.1	1.1
LO-RANSAC	26.8	22.2	21.5	21.3	1.3
MLESAC	21.8	22.6	20.8	20.2	1.1
ORSA	21.9	21.7	20.8	20.3	1.1
e_t (deg)	std	MS	MR	MR+MS	gain
<i>e_t</i> (deg) RANSAC	std 3.83	MS 2.12	MR 1.81	MR+MS 1.02	gain 3.7
e _t (deg) RANSAC MSAC	std 3.83 1.27	MS 2.12 1.03	MR 1.81 0.93	MR+MS 1.02 0.70	gain 3.7 1.8
e _t (deg) RANSAC MSAC LO-RANSAC	std 3.83 1.27 3.89	MS 2.12 1.03 2.14	MR 1.81 0.93 1.76	MR+MS 1.02 0.70 1.02	gain 3.7 1.8 3.8
e _t (deg) RANSAC MSAC LO-RANSAC MLESAC	std 3.83 1.27 3.89 2.02	MS 2.12 1.03 2.14 1.34	MR 1.81 0.93 1.76 1.23	MR+MS 1.02 0.70 1.02 0.77	gain 3.7 1.8 3.8 2.6

Experiments Average rotation and translation errors

Variations with the kind of scene

Estimation with standard RANSAC vs MR+MS

Two-view SfM Match selection Match refinement Match selection with match refinement Experiments Conclusion Additional

Experiments 3D point errors

Frontal view of point cloud

18 / 22

Experiments 3D point errors

Top view of point cloud

Conclusion

- Study of quality vs quantity of matches for 2-view SfM
 ⇒ correlation of SfM errors with match number & location errors
- A new method for the selection of subsets of accurate matches ⇒ improved SfM accuracy
- Combination with an improved LSM for match refinement
 ⇒ even better SfM accuracy

Future work: extension to multi-view

- track selection/reduction (possible)
- track refinement (not trivial)

Source code available on Github!

Thank you! Q & A

- 32

Additional Exploring subsets

Problem: Exploring all $M_{sub} \subset M$ for M_{sub}^* is impractical. Our solution:

Assuming a ranking function:

$$\phi: M \to \mathbb{R}$$
 such that $\forall i < j \Rightarrow \phi(m_i) < \phi(m_j)$, (10)

consider the fractions $M_{sub}(N) = \{m_i \mid 1 \le i \le N\}$. If ϕ is highly correlated to $e_{2D}(M, m)$, hence to $e_F(M, m)$, then

$$\min_{M_{\rm sub}\subset M} \frac{e_{\mathcal{F}}(M_{\rm sub})^2}{|M_{\rm sub}|} = \min_{N\leq |M|} \frac{1}{N} \min_{\substack{M_{\rm sub}\subset M\\|M_{\rm sub}|=N}} e_{\mathcal{F}}(M_{\rm sub})^2$$

$$\approx \min_{N\leq |M|} \frac{1}{N} e_{\mathcal{F}}(M_{\rm sub}(N))^2 \qquad (11)$$

Additional SIFT scoring function

Figure: Correlation of σ_{2D} and ϕ .

Figure: Histogram of ϕ