Match selection and refinement for highly accurate two-view SfM

Zhe Liu, Pascal Monasse, Renaud Marlet

Université Paris-Est, LIGM (UMR 8049), ENPC, F-77455 Marne-la-Vallée, France
ECCV 2014, September 8-11

Standard two-view Structure from Motion

RANSAC for
F estimation

Camera R \& t estimation

3D reconstruction

Point cloud

Match Selection

Quality vs quantity

Is using all inliers for F estimation the best thing to do?

- more matches with lower accuracy or
- less matches with higher accuracy

Goal: find large subset of most accurate matches
\Rightarrow better SfM accuracy

Match Selection

Correlation of errors to quality and quantity

Experiments on real dataset:

- varying quality: $\sigma_{2 D}$, match localization error
- varying quantity: N, number of matches

Measured errors:

- $e_{3 D}: 3 D$ point location error
- e_{R} : camera rotation error
- e_{t} : camera translation error
- e_{F} : average epipolar error

Observations:

$$
\begin{equation*}
\log \left(e_{3 D}\right), \log \left(e_{R}\right), \log \left(e_{t}\right) \approx \alpha \log \left(\sigma_{2 D}\right)-\beta \log (N) \tag{1}
\end{equation*}
$$

with α and β depending on the match configuration

$$
\begin{equation*}
e_{F} \propto \sigma_{2 D} \tag{2}
\end{equation*}
$$

Match Selection

Comparing errors

$$
\begin{equation*}
e_{3 D}, e_{R}, e_{t} \propto \frac{e_{F}^{\alpha}}{N^{\beta}} \tag{3}
\end{equation*}
$$

Knowing α / β is sufficient to compare errors:

$$
\begin{array}{r}
e_{3 D}<e_{3 D}^{\prime} \\
e_{R}<e_{R}^{\prime} \\
e_{t}<e_{t}^{\prime}
\end{array} \Leftrightarrow \frac{e_{F}^{\alpha}}{N^{\beta}}<\frac{e_{F}^{\prime \alpha}}{N^{\prime \beta}} \Leftrightarrow \frac{e_{F}^{\alpha / \beta}}{N}<\frac{e_{F}^{\prime \alpha / \beta}}{N^{\prime}}
$$

Thus, $M_{\text {sub }} \subset M$ is better than M if:

$$
\begin{equation*}
\frac{e_{F}\left(M_{\mathrm{sub}}\right)^{\alpha / \beta}}{\left|M_{\mathrm{sub}}\right|}<\frac{e_{F}(M)^{\alpha / \beta}}{|M|} \tag{5}
\end{equation*}
$$

Match Selection

Comparing errors

Knowing a lower bound $\gamma \leq \alpha / \beta$ is enough to compare errors:

$$
\begin{equation*}
\frac{e_{F}\left(M_{\mathrm{sub}}\right)^{\gamma}}{\left|M_{\mathrm{sub}}\right|}<\frac{e_{F}(M)^{\gamma}}{|M|} \Rightarrow \frac{e_{F}\left(M_{\mathrm{sub}}\right)^{\alpha / \beta}}{\left|M_{\mathrm{sub}}\right|}<\frac{e_{F}(M)^{\alpha / \beta}}{|M|} \tag{6}
\end{equation*}
$$

Experiments:

- $\alpha / \beta \geq 2$ almost consistently
- $\gamma=2$ thus safe for most scenes
- $\alpha / \beta=2$ theoretical value for homography case

Match Selection

Exploring match subsets

Goal: find the optimal subset $M_{\text {sub }}^{*}$ for estimating F

$$
\begin{equation*}
M_{\mathrm{sub}}^{*}=\underset{M_{\mathrm{sub}} \subset M}{\arg \min } \frac{e_{F}\left(M_{\mathrm{sub}}\right)^{\gamma}}{\left|M_{\mathrm{sub}}\right|} \tag{7}
\end{equation*}
$$

Problem: exploring all $M_{\text {sub }} \subset M$ is impractical
Our solution:

- score matches with some function $\phi: M \rightarrow \mathbb{R}$ (lower the better)
- sort matches according to $\phi: i<j \Rightarrow \phi\left(m_{i}\right)<\phi\left(m_{j}\right)$
- consider N best matches $M_{\text {sub }}=\left\{m_{1}, \ldots, m_{N}\right\}$ for all $N \leq|M|$
- in fact consider only a few values for N (discrete fractions of $|M|$)

Match Selection

Match ranking function

The choice of ϕ varies with the kind of feature.

For SIFT, match localization error correlates with:

- the scale of detected features
- the descriptor difference

Our choice:

$$
\begin{equation*}
\phi\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\max \left(\operatorname{scale}(\mathbf{x}), \operatorname{scale}\left(\mathbf{x}^{\prime}\right)\right) \times d\left(\operatorname{desc}(\mathbf{x}), \operatorname{desc}\left(\mathbf{x}^{\prime}\right)\right) \tag{8}
\end{equation*}
$$

Match Selection

Pipeline

KVLD: robust photometric matching method that removes most outliers before M is sub-sampled (Liu \& Marlet, BMVC 2012)

Match Selection

Conclusion for match selection

Is using all inliers for F estimation the best thing to do?

- more matches with lower accuracy or
- less matches with higher accuracy

Goal: find large subset of most accurate matches
\Rightarrow better SfM accuracy

Match Refinement

Least Square Matching (LSM)

$$
\begin{equation*}
A^{*}=\underset{A, f}{\arg \min } \sum_{x \in \text { Patch }}\left|I(x)-f \circ I^{\prime} \circ A(x)\right|^{2} \tag{9}
\end{equation*}
$$

with $f(i)=a i+b$ linear radiometric adjustment

Match Refinement

LSM extension

Least Square Focused Matching (LSFM):

- irregular sampling grid focused on patch center
- image scale exploration for robustness to local minima

Match Selection with Match Refinement

Pipeline

Refinement before selection:

Match Selection with Match Refinement
 Match ranking function

Feature point location adjusted \Rightarrow no more correlation of errors with

- detection scale
- descriptor difference

Another scoring function ϕ required

New ϕ based on correlation of errors with

- dissimilarity of affine-transformed patches
- shearing of affinity

Experiments

Average rotation and translation errors

Strecha et al.'s datasets: 95 image pairs (CVPR 2008)
std: RANSAC-like only MS: with match selection MR: with match refinement gain: std/(MR+MS)

$e_{R}\left(\right.$ deg $\left.\times 10^{-2}\right)$	std	MS	MR	MR + MS	gain
RANSAC	16.4	9.52	10.3	8.87	$\mathbf{1 . 9}$
MSAC	14.1	9.53	8.86	8.43	$\mathbf{1 . 7}$
LO-RANSAC	16.4	9.54	10.3	8.97	$\mathbf{1 . 8}$
MLESAC	15.8	7.81	9.50	7.76	$\mathbf{2 . 0}$
ORSA	12.2	7.24	6.48	6.60	$\mathbf{1 . 9}$
$e_{t}($ deg $)$	std	MS	MR	MR + MS	gain
RANSAC	1.85	1.09	1.23	1.04	$\mathbf{1 . 8}$
MSAC	1.59	1.08	1.03	0.96	$\mathbf{1 . 6}$
LO-RANSAC	1.83	1.10	1.21	1.05	$\mathbf{1 . 7}$
MLESAC	2.16	0.95	1.09	0.87	$\mathbf{2 . 5}$
ORSA	1.38	0.81	0.68	0.74	$\mathbf{1 . 9}$

Experiments

Average rotation and translation errors

DTU robot datasets: 108 image pairs (Aanæs et al., IJCV 2012)
std: RANSAC-like only MS: with match selection MR: with match refinement gain: std/(MR+MS)

$e_{R}\left(\right.$ deg $\left.\times \mathbf{1 0}^{-2}\right)$	std	MS	MR	MR + MS	gain
RANSAC	26.5	22.3	21.5	21.3	$\mathbf{1 . 2}$
MSAC	21.3	21.7	20.4	20.1	$\mathbf{1 . 1}$
LO-RANSAC	26.8	22.2	21.5	21.3	$\mathbf{1 . 3}$
MLESAC	21.8	22.6	20.8	20.2	$\mathbf{1 . 1}$
ORSA	21.9	21.7	20.8	20.3	$\mathbf{1 . 1}$
$e_{t}($ deg $)$	std	MS	MR	MR+MS	gain
RANSAC	3.83	2.12	1.81	1.02	$\mathbf{3 . 7}$
MSAC	1.27	1.03	0.93	0.70	$\mathbf{1 . 8}$
LO-RANSAC	3.89	2.14	1.76	1.02	$\mathbf{3 . 8}$
MLESAC	2.02	1.34	1.23	0.77	$\mathbf{2 . 6}$
ORSA	1.22	0.88	0.66	0.66	$\mathbf{1 . 8}$

Experiments

Average rotation and translation errors

Variations with the kind of scene

Strecha et al. (6 scenes)

DTU robot (10 scenes)

Estimation with standard RANSAC vs MR+MS

Experiments
 3D point errors

Frontal view of point cloud

Ground truth Std RANSAC MR+MS

Experiments
 3D point errors

Top view of point cloud

Ground truth Std RANSAC MR+MS

Conclusion

- Study of quality vs quantity of matches for 2-view SfM \Rightarrow correlation of SfM errors with match number \& location errors
- A new method for the selection of subsets of accurate matches \Rightarrow improved SfM accuracy
- Combination with an improved LSM for match refinement \Rightarrow even better SfM accuracy

Future work: extension to multi-view

- track selection/reduction (possible)
- track refinement (not trivial)

Source code available on Github!
Thank you!
Q \& A

Additional

Exploring subsets

Problem: Exploring all $M_{\text {sub }} \subset M$ for $M_{\text {sub }}^{*}$ is impractical.
Our solution:
Assuming a ranking function:

$$
\begin{equation*}
\phi: M \rightarrow \mathbb{R} \text { such that } \forall i<j \Rightarrow \phi\left(m_{i}\right)<\phi\left(m_{j}\right) \tag{10}
\end{equation*}
$$

consider the fractions $M_{\text {sub }}(N)=\left\{m_{i} \mid 1 \leq i \leq N\right\}$.
If ϕ is highly correlated to $e_{2 D}(M, m)$, hence to $e_{F}(M, m)$, then

$$
\begin{align*}
\min _{M_{\mathrm{sub}} \subset M} \frac{e_{F}\left(M_{\mathrm{sub}}\right)^{2}}{\left|M_{\mathrm{sub}}\right|} & =\min _{N \leq|M|} \frac{1}{N} \min _{\substack{M_{\mathrm{sub}} \subset M \\
\left|M_{\mathrm{sub}}\right|=N}} e_{F}\left(M_{\mathrm{sub}}\right)^{2} \\
& \approx \min _{N \leq|M|} \frac{1}{N} e_{F}\left(M_{\mathrm{sub}}(N)\right)^{2} \tag{11}
\end{align*}
$$

Additional

SIFT scoring function

Figure: Correlation of $\sigma_{2 D}$ and ϕ.

Figure: Histogram of ϕ

