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Visual Category as Collection of filters

Poselets Mid Level Discriminative Patches

Exemplar SVMs



Candidate Generation

Candidate 
Generation

Pool of Filters

 Filters are generated using positives and negatives examples.

 Generation of a large pool of filters.

Positives Negatives
Filter 

(SVM Classifier)



 Two sources of inefficiency

Candidate Selection

Candidate
Selection

Selected Filters (n)
(n << N)

Pool of Filters (N)

 Impractical to use all generated filters.

Redundancy Noise 

good bad



Candidate Selection Cont…

Expensive 
Evaluation

Selected Filters (n)
(n << N)

Run as detectorPool of Filters (N)

Bottleneck



What we Propose

Expensive 
Evaluation

Selected Filters (n)
(n << N)

Run as detectorPool of Filters (N)

By passes explicit 
evaluation

fast

Our Contribution : fast automatic selection of  a subset of discriminative and non 
redundant filters given a collection of filters



Category Independent Model

Images +/-
Pool (Candidate Filters)

N >> n
Selected Filters 
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fast slow

(w , λ)

Test Category

fast

N candidates

n selected

fast

 Can rank filters as accurately as a direct evaluation on 
thousands of examples.



Poselets

 Poselets are semantically aligned discriminative patterns that 
capture parts of object.

 Patches are often far visually, but they are close semantically



Poselet Architecture

 Candidate Selection :

 Candidate Generation :

24

76

Timings

generation

selection

Total Time = 20hrs



 Save significantly in training time if we can quickly select 
small set of relevant exemplars.

ESVM
SVM for each positive example

Test time

Redundant Exemplars



Good Filters Bad Filters

Good / Bad Filters

Gradient orientation within a cell 
(active simultaneously)

Gradient orientation of neighboring cells 
(lines, curves)



 Norm: consistent with high degree of alignment. 
 Normalized Norm: Makes norm invariant to filter dimension. 

 Cell Covariance: Dif ferent orientation bins within a cell are 
highly structured. Gao et al. ECCV 2012

 Cell Cross Covariance: Strong correlation between filter 
weights in nearby spatial locations.

Features for filter Ranking

Cell Covariance Cell Cross Covariance

Decreasing Norm



 Φ(𝒇𝒇)– representation of filter 𝒇𝒇
 Goal : model ranking score of 𝒇𝒇 by a linear function < w,Φ(𝒇𝒇)>
 Training data : {𝒇𝒇g,i} ,  yg,𝑖𝑖
 g = 1, … , 𝐺𝐺 where 𝐺𝐺 is number of training categories. 
 𝑖𝑖 = 1, … , 𝑁𝑁 where N is number of filters per category.
 yg,𝑖𝑖 is estimated quality, obtained by expensive method.

 𝒇𝒇g,𝑖𝑖 is ordered in descending value of yg,𝑖𝑖

 Δg,i,j= yg,𝑖𝑖 - yg,j,  for 𝑖𝑖 > 𝑗𝑗 measures how much better 𝒇𝒇g,𝑖𝑖 is from 
𝒇𝒇g,j

 δΦg,i,j = Φ 𝒇𝒇g,i − Φ 𝒇𝒇g,𝑗𝑗

 Slack rescaled hinge loss

Learning to Rank Filters



 Selected parts should be individually good and 
complimentary.

 First filter - 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 ŷ𝑖𝑖
 𝑡𝑡 filters selected so far
 Select next filter using following

Greedy approximation for Diversity

Selected Filters Not yet Selected

0.9

0.4

0.1

Added to 
selected set



LDA Acceleration
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N SVM filters
(Candidate Generation)
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SVM 
bootstrapping

Poor 
performance

Good
performance

Good
performance

Selection with 
LDA Acceleration

SVM 
bootstrapping

LDA

Our Selection Method



Experiments with Poselets

Test 
category

Filters used for training from 
remaining categories

 800 poselet filters for each category
 Goal : given a category select 100 out of 800 filters
 Ranking task
 Detection task



Performance of Ranker

 Predicted ranking vs true ranking as per AP scores.

Norm
(svm)

Σ – Norm
(svm)

Gao et al. ECCV 2012

Rank
(lda)

Rank
(svm)< < <
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Detection Results

Σ – Norm (svm)

Random

Norm (svm)

10% Val

Norm (svm) + Div

Rank (svm)

Σ – Norm (svm) + Div

Oracle (expensive evaluation)

Rank (svm) + Div

Rank (lda) + Div

Rank (lda) + Div
2X Seeds

Speed up w.r.t. Oracle
By constructing a 
poselet detector using 
selected fi lters

Order of magnitude 
Speed up.
Improved performance 
than Oracle



 Each category has 630 exemplars on average.
 Goal select 100 exemplars such that they reproduce result for 

optimal set of 100 exemplars.
 Optimal set – weights of each exemplar in the final scoring 

model. (Oracle)
 Frequency of exemplars

Experiments with exemplar SVMs

Frequent Exemplar Rare Exemplar



 We have presented an automatic mechanism for selecting 
diverse set of discriminative filters.

 Order of magnitude improvement in training time.
 Our approach is applicable to any discriminative architecture 

that uses a collection of filters.
 Insight into what makes a good filter for object detection.
 Can be used as an attention mechanism during test time
 Reduce number of convolutions / hashing lookups.

Bottom line: One can tell whether a filter is useful for a category without 
knowing what that category is, just by “looking” at the filter.
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