

European Conference on Computer Vision

Knowing a Good HOG Filter When You See It: Efficient Selection of Filters for Detection

Ejaz Ahmed¹, Gregory Shakhnarovich², and Subhransu Maji³

- ¹ University of Maryland, College Park
- ² Toyota Technological Institute at Chicago
 - ³ University of Massachusetts, Amherst

Visual Category as Collection of filters

Poselets

Mid Level Discriminative Patches

Exemplar SVMs

Candidate Generation

Generation of a large pool of filters.

Filters are generated using positives and negatives examples.

Candidate Selection

Impractical to use all generated filters.

Two sources of inefficiency

Candidate Selection Cont...

 $(n \ll N)$

Bottleneck

What we Propose

Our Contribution: fast automatic selection of a subset of discriminative and non redundant filters given a collection of filters

Category Independent Model

Can rank filters as accurately as a direct evaluation on thousands of examples.

Poselets

Poselets are semantically aligned discriminative patterns that capture parts of object.

Patches are often far visually, but they are close semantically

Poselet Architecture

Candidate Generation :

Candidate Selection :

ESVM

SVM for each positive example

Save significantly in training time if we can quickly select small set of relevant exemplars.

Good / Bad Filters

Gradient orientation within a cell (active simultaneously)

Gradient orientation of neighboring cells (lines, curves)

Features for filter Ranking

- Norm: consistent with high degree of alignment.
- Normalized Norm: Makes norm invariant to filter dimension.

Decreasing Norm

- Cell Covariance: Different orientation bins within a cell are highly structured. Gao et al. ECCV 2012
- Cell Cross Covariance: Strong correlation between filter weights in nearby spatial locations.

Cell Covariance

Cell Cross Covariance

Learning to Rank Filters

- $lacktriangledown\Phi(f)$ representation of filter f
- lacksquare Goal: model ranking score of f by a linear function < w, $\Phi(f)>$
- lacktriangle Training data : $\{m{f}_{\mathrm{g,i}}\}$, $\mathbf{y}_{\mathrm{g,}i}$
 - g = 1, ..., G where G is number of training categories.
 - i = 1, ..., N where N is number of filters per category.
 - $y_{g,i}$ is estimated quality, obtained by expensive method.
- lacksquare $m{f}_{\mathrm{g},i}$ is ordered in descending value of $\mathbf{y}_{\mathrm{g},i}$
- $\Delta_{{
 m g,i,j}}={
 m y_{{
 m g,i}}}$ ${
 m y_{{
 m g,j}}}$, for i>j measures how much better $f_{{
 m g,i}}$ is from $f_{{
 m g,j}}$
- $\bullet \delta \Phi_{g,i,j} = \Phi(\boldsymbol{f}_{g,i}) \Phi(\boldsymbol{f}_{g,j})$

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{g=1}^G \sum_{i=1}^{N-1} \sum_{j=i+1}^N \left[1 - \left\langle \mathbf{w}, \delta \boldsymbol{\phi}_{g,i,j} \right\rangle \right]_+ \varDelta_{g,i,j}$$

Slack rescaled hinge loss

Greedy approximation for Diversity

- Selected parts should be individually good and complimentary.
- First filter $argmax_i \ \hat{y}_i$
- t filters selected so far
- Select next filter using following

$$\underset{i}{\operatorname{argmax}} \left\{ \widehat{y}_i - \lambda \max_{j=1,\dots,t} A_{i,j} \right\}$$

LDA Acceleration

Experiments with Poselets

Test category

Filters used for training from remaining categories

- 800 poselet filters for each category
- Goal: given a category select 100 out of 800 filters
- Ranking task
- Detection task

Performance of Ranker

Predicted ranking vs true ranking as per AP scores.

Norm
$$< \sum - Norm < Rank < Rank (svm) < (svm) < (lda) < (svm)$$

Detection Results

Experiments with exemplar SVMs

- Each category has 630 exemplars on average.
- Goal select 100 exemplars such that they reproduce result for optimal set of 100 exemplars.
- Optimal set weights of each exemplar in the final scoring model. (Oracle)
- Frequency of exemplars

Frequent Exemplar

Rare Exemplar

- We have presented an automatic mechanism for selecting diverse set of discriminative filters.
- Order of magnitude improvement in training time.
- Our approach is applicable to any discriminative architecture that uses a collection of filters.
- Insight into what makes a good filter for object detection.
- Can be used as an attention mechanism during test time
 - Reduce number of convolutions / hashing lookups.

Bottom line: One can tell whether a filter is useful for a category without knowing what that category is, just by "looking" at the filter.