

European Conference on Computer Vision

Refraction Wiggles for Measuring Fluid Depth and Velocity from Video

Tianfan Xue¹, Michael Rubinstein^{2,1}, Neal Wadhwa¹, Anat Levin³,

Fredo Durand¹, and William T. Freeman¹

¹MIT CSAIL

²Microsoft Research

³Weizmann Institute

Measure refractive flow velocity and depth from natural videos

- **Single camera**: measure the velocity of air
- Stereo camera: measure the depth of air

Flow Velocity and Depth Recovered from Videos

Outline

- Introduction and related work
- Algorithm:
 - Wiggle features
 - Measure fluid depth
 - Measure fluid velocity
 - Probabilistic formulation
- Experimental results

Potential Applications for fluid motion estimation

Aircraft scheduling

Toxic gas detection

Related work

Particle Image Velocimetry (PIV)

Related work

Tracer-based method (1): Schlieren photography

Schlieren setup

Schlieren image

Schlieren PIV [Jonassen et al., Schlieren PIV, 2006]

Related work

Tracer-based method (2): Background Oriented Schlieren (BOS)

BOS setup

BOS image

Related works

Outline

- Introduction and related work
- Algorithm:
 - Wiggle features
 - Measurement of fluid depth
 - Measurement of fluid velocity
 - Probabilistic formulation
- Experimental result

Outline of the algorithm

Solid Background

Wiggle *v*

Wiggle features

 Wiggle features are the distortion of background pattern due to the change of refraction

Example of Wiggle Features

Outline

- Introduction and related works
- Algorithm:
 - Wiggle features
 - Measurement of fluid depth
 - Measurement of fluid velocity
 - Probabilistic formulation
- Experimental results

Fluid Stereo should fuse wiggle motions, not image intensities

Example of Refractive Stereo

Outline

- Introduction and related work
- Algorithm:
 - Wiggle features
 - Measurement of fluid depth
 - Measurement of fluid velocity
 - Probabilistic formulation
- Experimental results

Fluid Flow should match of the wiggle features between neighboring frames (the flow of the flow)

• We cannot find the motion from t_1 to t_2 by matching intensities

Fluid Flow should match the wiggle features between neighboring frames (the flow of the flow)

- We cannot find the motion from t_1 to t_2 by matching intensities
- But we can find it by tracking wiggle features

Example of Refractive Flow

Input video

Velocity of air flow

Brightness Constancy vs. Wiggle Constancy

	Brightness constancy	Wiggle constancy
Solid Object Stereo		
Solid Object Flow		
Refractive Object Stereo		
Refractive Object Flow		

Outline

- Introduction and related work
- Algorithm:
 - Wiggle features
 - Measurement of fluid depth
 - Measurement of fluid velocity
 - Probabilistic formulation
- Experimental Results

Probabilistic Optical Flow to Calculate Wiggle Features

Why a robust, probabilistic formulation is needed:

The wiggle feature is small (in the order of 0.1 pixel), so it is easily overwhelmed by the noise.

Probabilistic Refractive Flow:

Outline

- Introduction and related work
- Algorithm:
 - Wiggle features
 - Measurement of fluid depth
 - Measurement of fluid velocity
 - Probabilistic formulation
- Experimental Results

Evaluate the refractive flow on simulated sequence

- We simulate a fluid flow with known velocity, and test it on three different backgrounds.
- Error drops when temperature increases

Simulated fluid density [Stam et al. *Stable Fluid* 2004]

Background texture

Real Sequence: Hairdryer (1000fps)

Wiggle feature

Flow field of air

Comparison with Velocimeter Measurements

Experiment Setup

Input Video

	p1	p2	р3	p4
By Algorithm (m/s)	0.8	1.4	3.2	12.0
By Velocimeter (m/s)	0.0	0.3	1.4	13.8

Comparison of fluid velocity measurements

Real Sequence: Lights

Input (Left view)

Input (Right view)

Disparity map of air flow

Wiggle feature (Left view)

Wiggle feature (Right view)

3D view of air flow

Real Sequence: Hand

Input Video

Wiggle feature

Flow field of air

Wiggle features

- We introduce wiggles as a video image feature. These are small motions, here caused by the motion of turbulent air.
- These wiggles can be <u>stereo-fused</u>, revealing the depth of the turbulent flow.
- The wiggles can be <u>tracked</u>, revealing the motion of the turbulent flow.
- We introduce a <u>probabilistic algorithm</u>, using both mean and variance estimates, to reliably track the wiggle features, which can be small and noisy.

Thank you!

http://people.csail.mit.edu/tfxue/proj/fluidflow/

Or search for: "wiggle flow MIT"

Left view

Disparity of air