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 Shrinking  bias
 Sensitivity to weight of regularization
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 Curvature 
Schoeneman 2009, Olsson 2013, Nieuwenhuis et al. 2014

 Connectivity Prior 
Vicente et al.2008, Novozin et al. 2010 

 Star-Shape Prior 
Veksler 2008, Gulshan et al. 2010

 Part-Based Shape Prior 
Felzenszwalb & Veksler 2010

c
qp



Image credit: http://www.fetal.com/

Image credit: Andrew Delong

Convexity



 N-sided convex polygon Strekalovskiy & Cremers 2011
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 N-sided convex polygon Strekalovskiy & Cremers 2011



 N-sided convex polygon Strekalovskiy & Cremers 2011

•More Parts
•Finer Discretization of Orientation
•Expensive to Optimize



 We can obtain an arbitrary convex object 
for any choice of orientation discretization

 Discrete Optimization Framework
 Efficient to optimize without GPU
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 Convexity Shape Prior

 Squared Curvature
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O(N) , N=|Ω|
local triplets

O(N2) , N=|Ω|
All triplets

Nieuwenhuis et al. CVPR14 



 is not submodular

 Too many triple potentials
Naïve evaluation is expensive O(N2)
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 Trust Region Framework
 Discrete High Order Energies
 Binary Pairwise Energies

 Direct application – too slow!

 Dynamic Programming to speed up 
energy evaluation and approximation

Gorelick et al. ECCV12, CVPR13

Gorelick et al. CVPR14
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Unary Terms
Boykov et al. 2006

Submodular

fixed in each iteration
inversely related to trust region size
adjusted based on quality of approximation

tλ

Gorelick et al. 
ECCV12, CVPR13,

CVPR14



 Evaluate and approximate
in each iteration

 Naïve computation is    O(N2)

 We use dynamic programming O(N)
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 It takes O(mN) operations 
to scan all lines in all orientations

convexityE

N = |Ω|
m = #orientations



Input

User Scribbles

No regularization

ω= 0.01 ω= 2.4

C

ω=2.3 

B

B C

A

A



Input

User Scribbles

No regularization

ω= 0.01 ω= 2.4

C

ω=2.3 

B

B C

A

A



Input

User Scribbles

No regularization

ω=2.3 ω= 0.01 ω= 2.4

B

C

B C

A

A

ω= 0.1ω= 0.01 ω= 10

Virtually Parameter Free
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 In theory -
can be optimized with QPBO and TRWS

 In practice - prohibitively expensive 

 Compact Model:                   cliques)( NNO
Slower than full model, 

Dynamic Programming does not apply

Our method w/o 
Dynamic  Programming

QPBO & TRWSVS.
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Ours
no DP

QPBO

TRWS
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T= 8596.4 sec.



 TR is a local Iterative optimization 
cannot guarantee global minimum

 Sensitivity to Initialization
Init 1 Inferior Solution Init 2 Global Minimum

E= 4550E= 5850

E= 8150E= 17475



 Convexity shape prior within discrete 
optimization framework
 no shrinking bias
 removes noise
 fills in holes
 ensures connectivity
 preserves sharp corners

 Our model is scale invariant due to ∞ constraints

 Efficient optimization based on TR and DP



 Code is available online
 http://vision.csd.uwo.ca/code/

 Please come by our poster tomorrow
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