

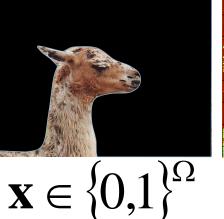
Convexity Shape Prior for Segmentation

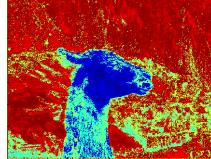
Lena Gorelick

joint work with

Binary Segmentation Energy

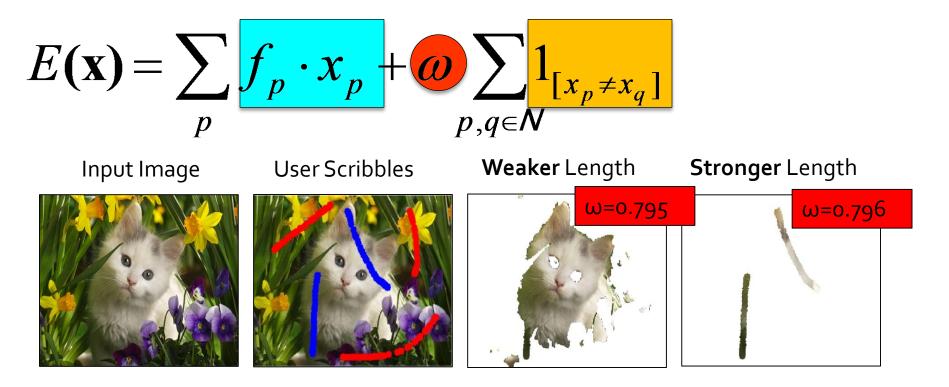
 $E(\mathbf{x}) = \sum_{p} f_{p} \cdot x_{p} + \lambda \sum_{p,q \in \mathbb{Z}} \mathbf{1}_{[x_{p} \neq x_{q}]}$ Length **Regularization Potts Model**





Submodular global optimum with graphcut (Boros & Hammer, 2002)

Length Regularization Shortcomings



- Shrinking bias
- Sensitivity to weight of regularization

Other Regularization Models

Curvature

Schoeneman 2009, Olsson 2013, Nieuwenhuis et al. 2014

Connectivity Prior

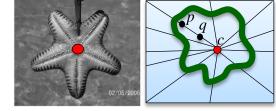
Vicente et al.2008, Novozin et al. 2010

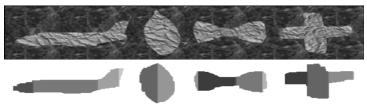
Star-Shape Prior

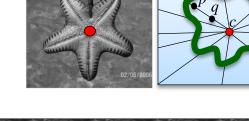
Veksler 2008, Gulshan et al. 2010

Part-Based Shape Prior

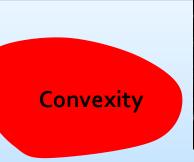
Felzenszwalb & Veksler 2010







Shape Convexity-High Order Regularization



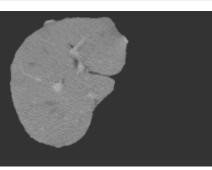


Image credit: Andrew Delong

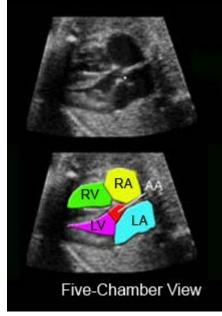
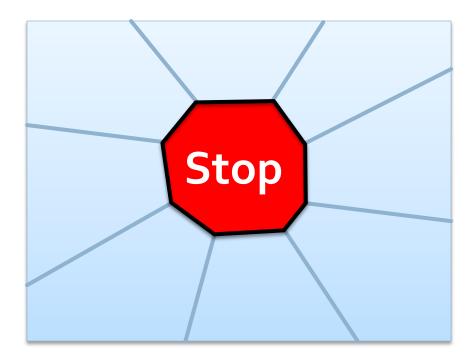


Image credit: http://www.fetal.com/

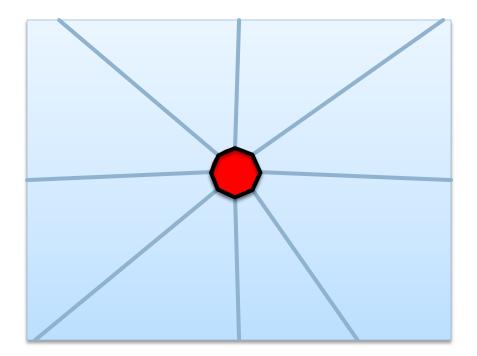
Related Work in Continuous Optimization

N-sided convex polygon Strekalovskiy & Cremers 2011



Related Work in Continuous Optimization

N-sided convex polygon Strekalovskiy & Cremers 2011



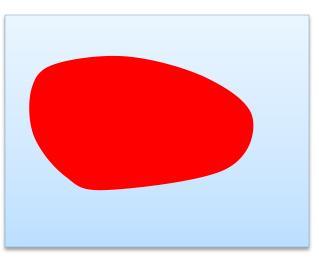
Related Work in Continuous Optimization

N-sided convex polygon Strekalovskiy & Cremers 2011

More Parts
Finer Discretization of Orientation
Expensive to Optimize

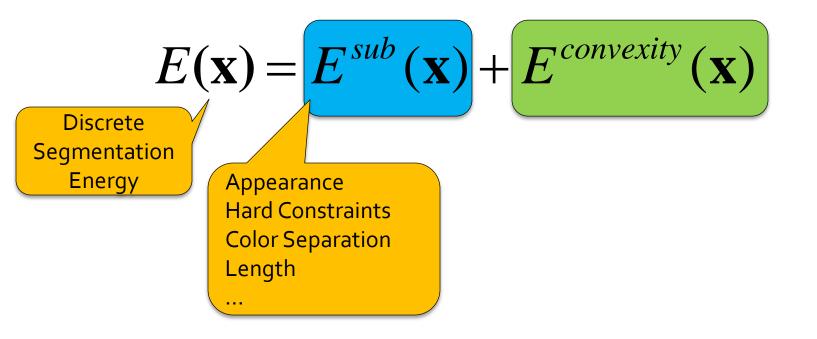
Our Approach

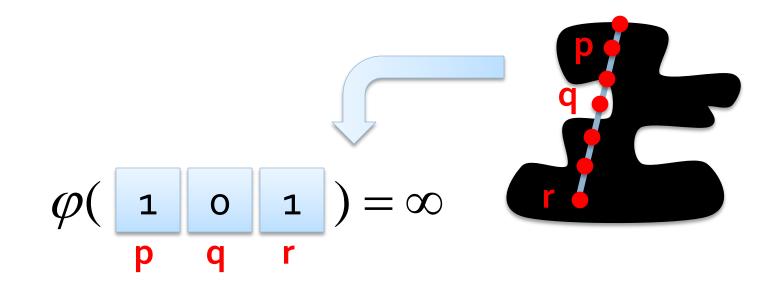
We can obtain an arbitrary convex object for any choice of orientation discretization

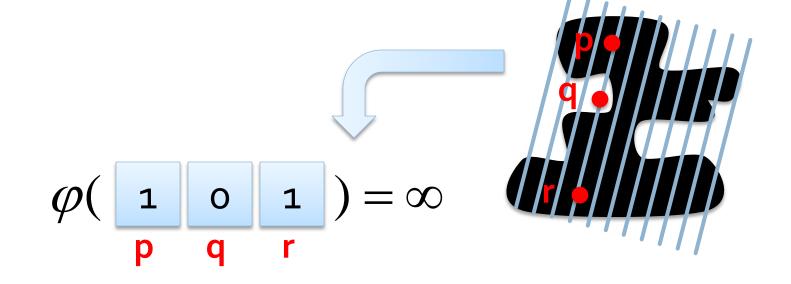


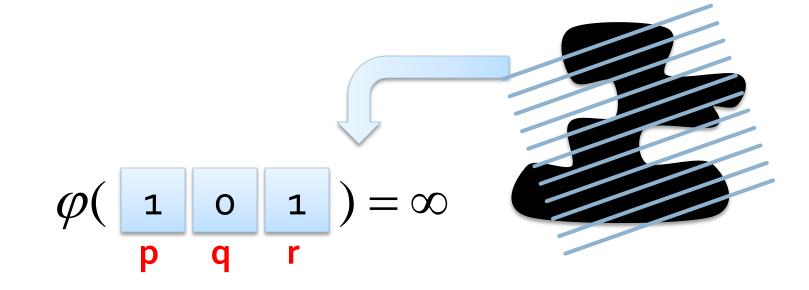
- Discrete Optimization Framework
 - Efficient to optimize without GPU

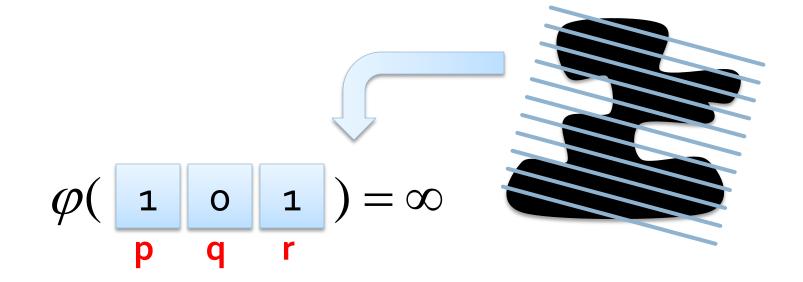
Our Segmentation Energy with Convexity Shape Prior

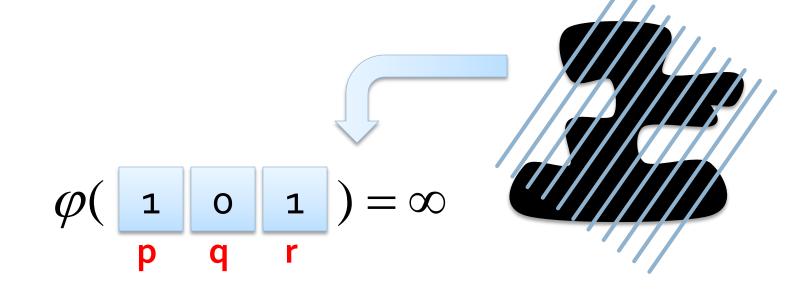


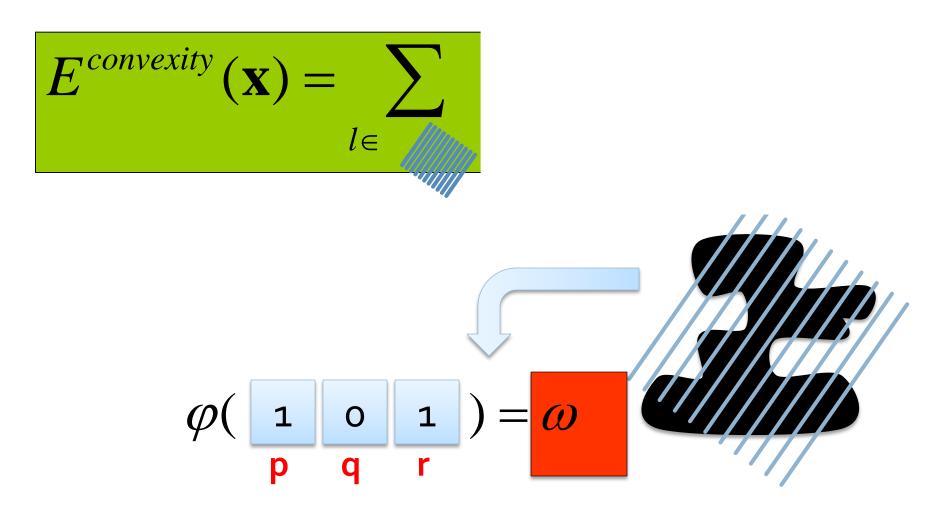




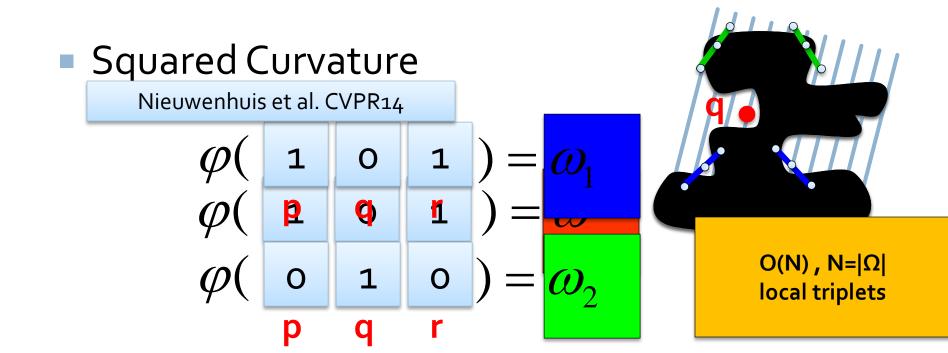




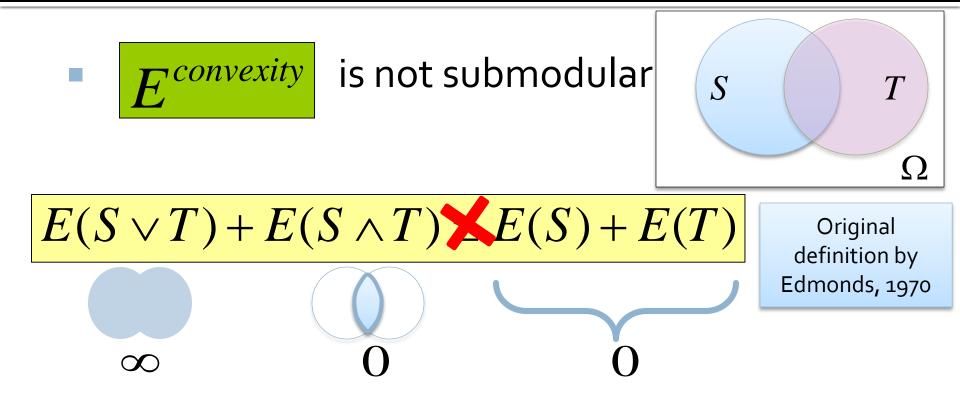




O(N²) , N=|Ω| All triplets



Difficulties in optimizing



E^{convexity}

Too many triple potentials
 Naïve evaluation is expensive O(N²)

Optimization

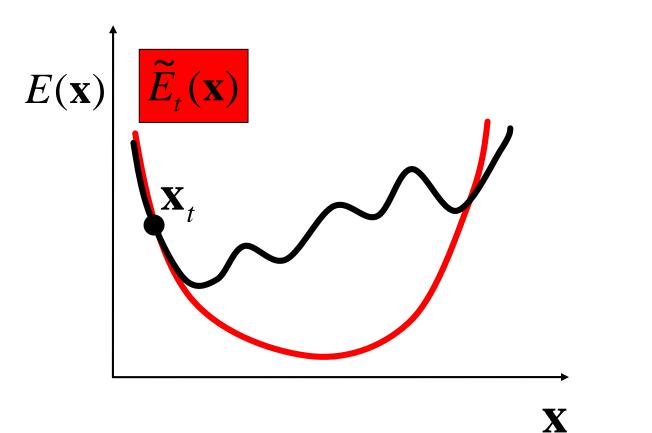
- Trust Region Framework
 - Discrete High Order Energies
 - Binary Pairwise Energies
- Direct application too slow!
- Dynamic Programming to speed up energy evaluation and approximation

Gorelick et al. ECCV12, CVPR13

Gorelick et al. CVPR14

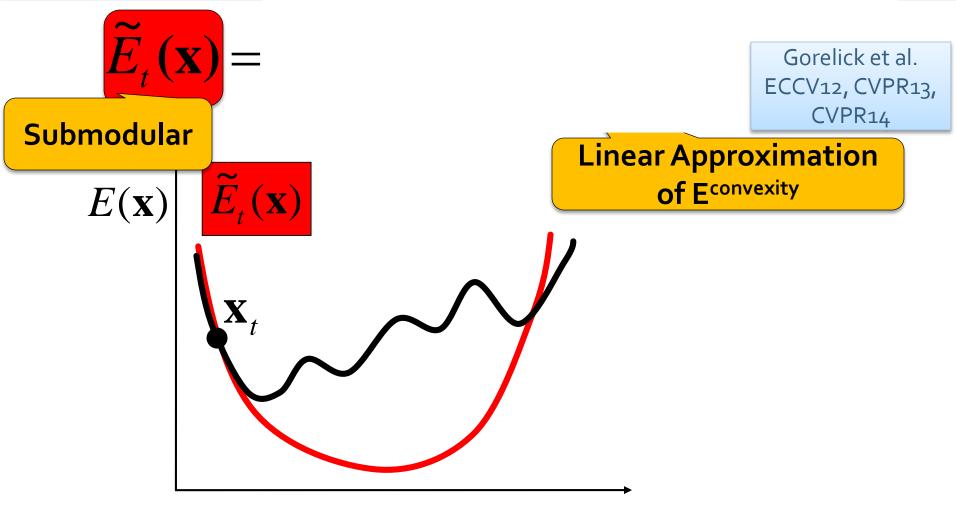
Trust Region Overview

$$E(\mathbf{x}) = \underbrace{E^{sub}(\mathbf{x})}_{e} + \underbrace{E^{convexity}(\mathbf{x})}_{e}$$

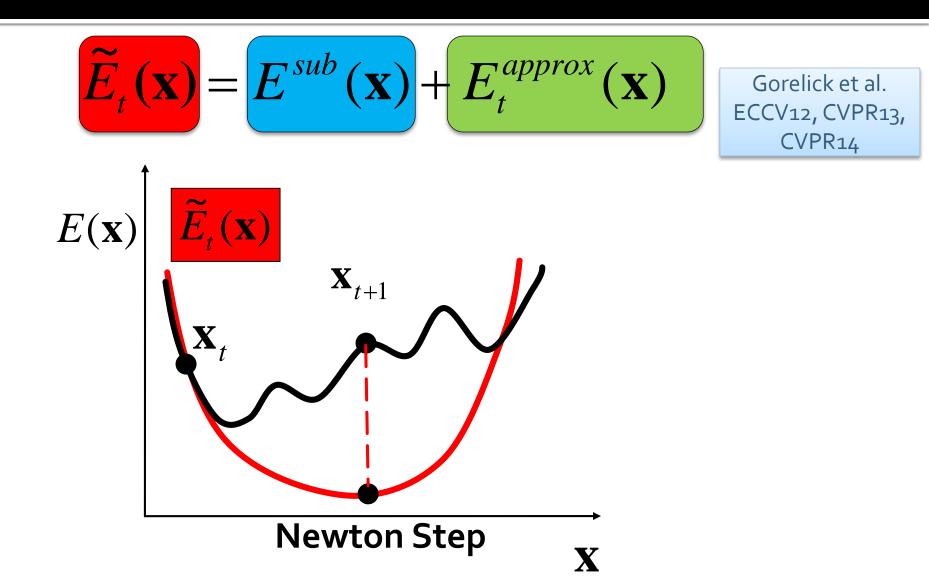


Gorelick et al. ECCV12, CVPR13, CVPR14

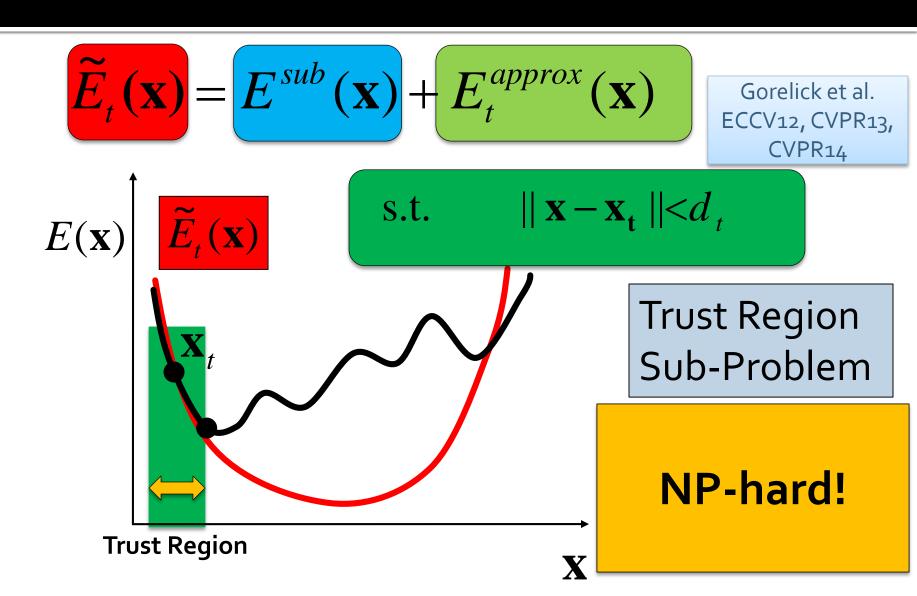
Trust Region Overview



Trust Region Overview



Trust Region Sub-Problem



Approximate TR sub-problem

$$L_{t}(\mathbf{x}) = \underbrace{E^{sub}(\mathbf{x})}_{t} + \underbrace{E^{approx}_{t}(\mathbf{x})}_{t} + \underbrace{E^{cCV_{12}, CVPR_{13}, CVPR_{14}}_{t}}_{t}$$

$$\underbrace{L_{t}(\mathbf{x})}_{t} = \underbrace{E^{sub}(\mathbf{x})}_{t} + \underbrace{E^{approx}_{t}(\mathbf{x})}_{t} + \underbrace{E^{cCV_{12}, CVPR_{13}, CVPR_{14}}_{t}}_{t}$$

$$\underbrace{L_{t}(\mathbf{x})}_{t} = \underbrace{E^{sub}(\mathbf{x})}_{t} + \underbrace{E^{approx}_{t}(\mathbf{x})}_{t} + \underbrace{E^{approx}_{t}(\mathbf{x})}_{t}$$

 $\lambda_t \begin{cases} \text{fixed in each iteration} \\ \text{inversely related to trust region size} \\ \text{adjusted based on quality of approximation} \end{cases}$

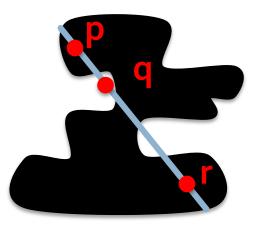
Trust Region & Dynamic Programming

 Evaluate and approximate in each iteration

Naïve computation is O(N²)

We use dynamic programming O(N)

Evaluation of *E*^{convexity}

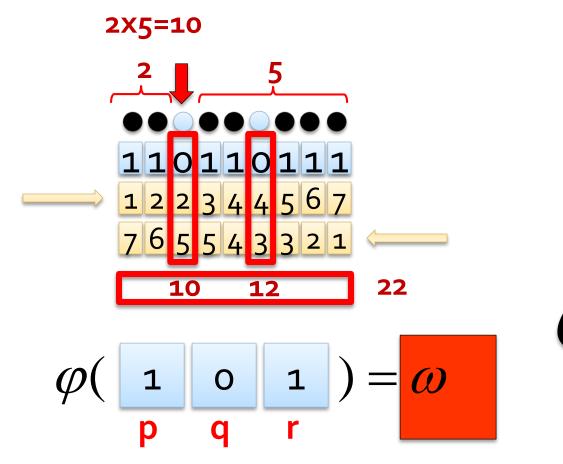


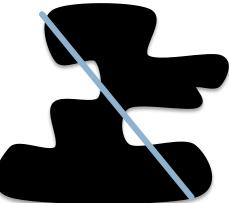
$$\varphi(\begin{array}{rrrr} 1 & 0 & 1 \\ p & q & r \end{array}) = \omega$$

Evaluation of *E*^{convexity}

$$\varphi(\begin{array}{rrrr} 1 & 0 & 1 \\ p & q & r \end{array}) = \omega$$

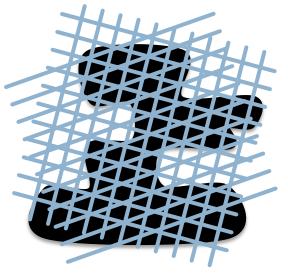
Evaluation of *E*^{convexity}



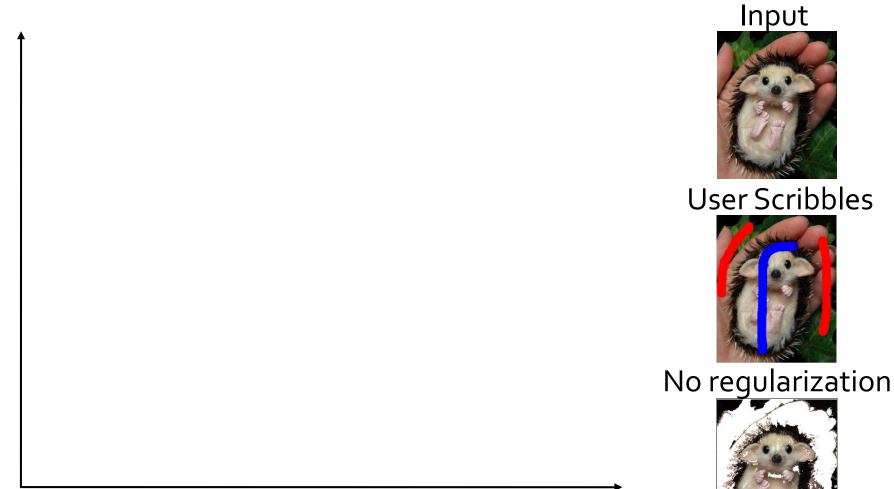


It takes O(mN) operations to scan all lines in all orientations

N = |Ω| m = #orientations

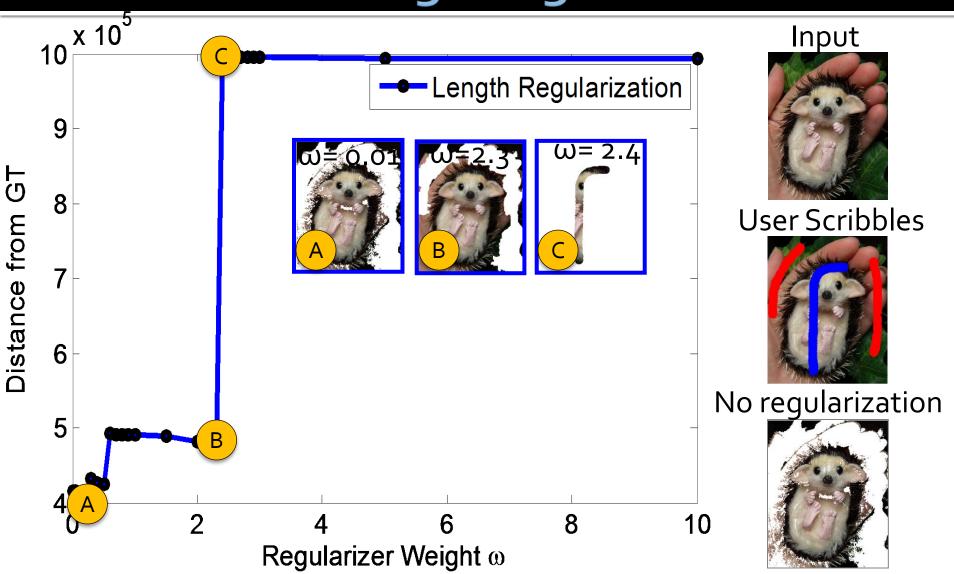


Experiments & Results Interactive Image Segmentation

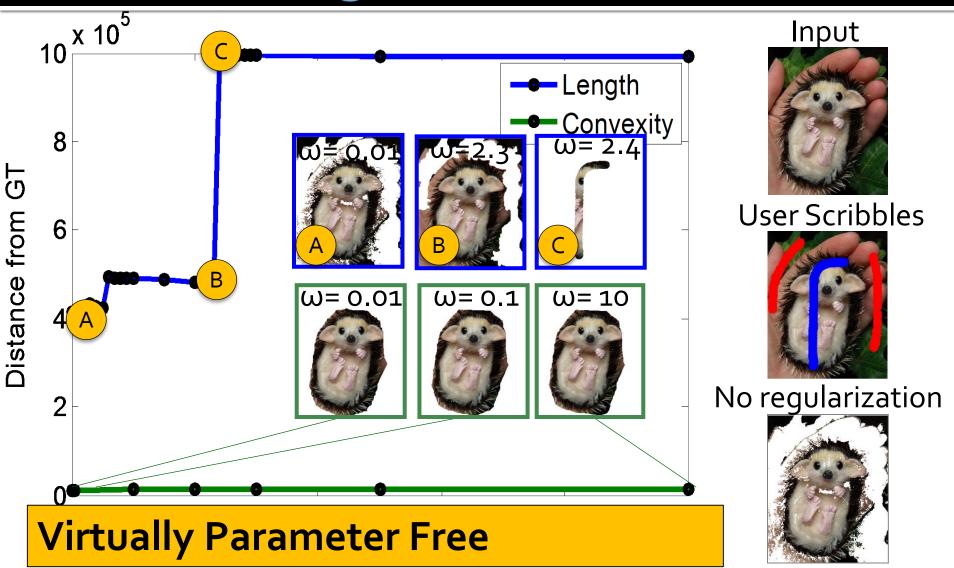


Regularizer Weight ω

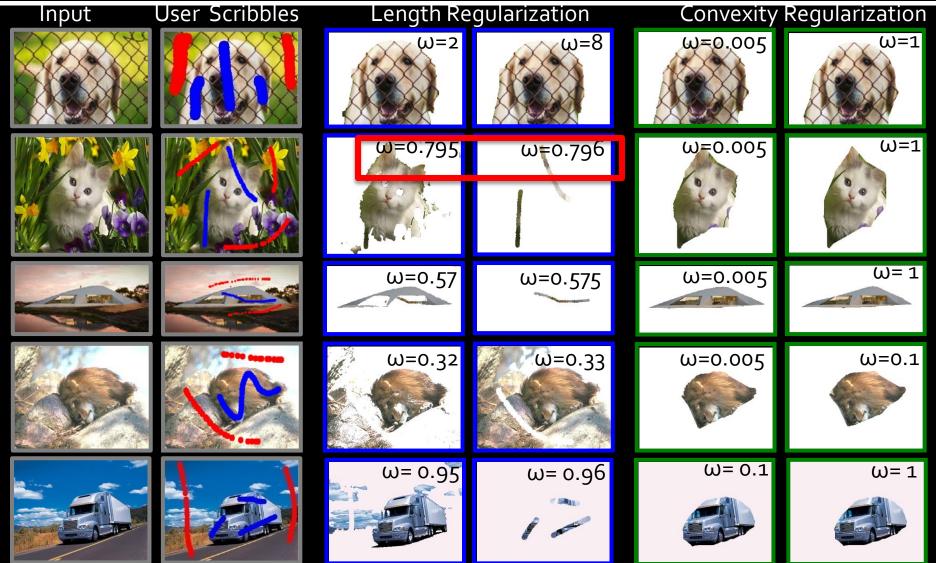
Experiments & Results Interactive Image Segmentation



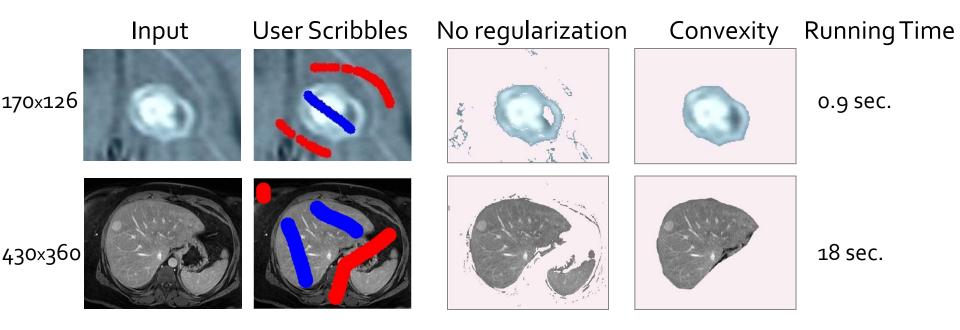
Experiments & Results Natural Images



Experiments & Results Natural Images



Experiments & Results Medical Images



Comparison with QPBO and TRWS

$E^{convexity}$

can be optimized with <code>QPBO</code> and <code>TRWS</code>

In practice - prohibitively expensive

QPBO & TRWS

• **Compact Model**: $O(N\sqrt{N})$ cliques

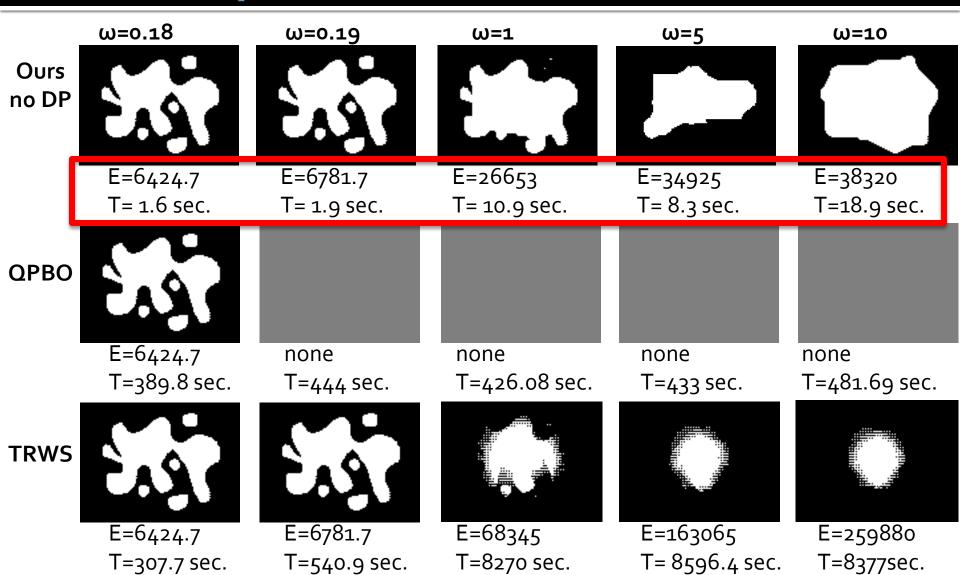
Slower than full model, Dynamic Programming does not apply

Our method w/o Dynamic Programming

In theory -

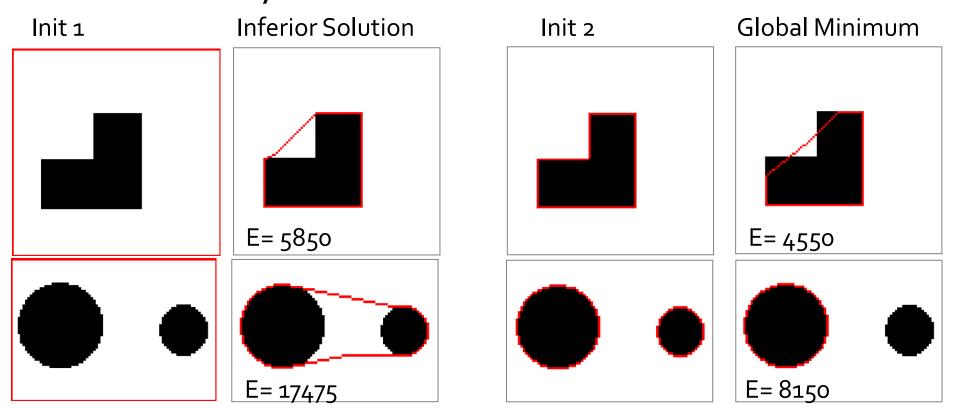
VS.

Comparison with QPBO and TRWS for *Compact* Model



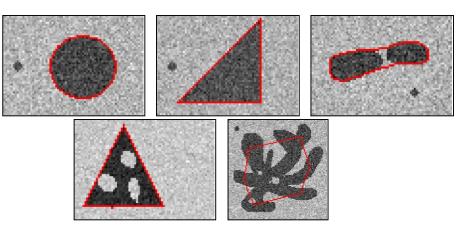
Limitations of our method

 TR is a local Iterative optimization → cannot guarantee global minimum
 Sensitivity to Initialization



Conclusions

- Convexity shape prior within discrete optimization framework
 - no shrinking bias
 - removes noise
 - fills in holes
 - ensures connectivity
 - preserves sharp corners



- Our model is scale invariant due to ∞ constraints
- Efficient optimization based on TR and DP

Thank you!

- Code is available online
 - http://vision.csd.uwo.ca/code/

Please come by our poster tomorrow