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Goal: Articulated Pose Estimation
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Parts have highly multi-modal 
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Use a high-capacity supervised 
predictor capable of handling 
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Boosted Random Forests
[Breiman, 2001] [Friedman,  2001]
[Caruana et al., 2009]
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Local Image Evidence is Weak

Head Neck L-Shoulder L-Elbow L-Wrist

Multi-class classification of each patch into one of P part-types + background

Certain parts are easier to detect than others
Local image evidence is weak



Part Context is a Strong Cue

L-ShoulderL-Elbow

 Part detection confidences provide spatial context cues

Image



Part Context is a Strong Cue

L-ShoulderL-Elbow

 Part detection confidences provide spatial context cues

Image



Head Neck L-Shoulder L-Elbow L-Wrist

O
ffs

et
 

Fe
at

ur
es

Pa
tc

h
Fe

at
ur

es

Context features summarize responses of a previous prediction stage
Part Context is a Strong Cue



Head Neck L-Shoulder L-Elbow L-Wrist

O
ffs

et
 

Fe
at

ur
es

Pa
tc

h
Fe

at
ur

es

Context features summarize responses of a previous prediction stage
Part Context is a Strong Cue



Stage I Confidence

Head Neck L-Shoulder L-Elbow L-Wrist

g2g1 g3

Context 
Features

Context 
Features

Stage I 
Confidence Maps

Stage II 
Confidence Maps

Stage III 
Confidence Maps

Image
 Features



Stage II Confidence

g2g1 g3

Context 
Features

Context 
Features

Stage I 
Confidence Maps

Stage II 
Confidence Maps

Stage III 
Confidence Maps

Image
 Features

Head Neck L-Shoulder L-Elbow L-Wrist



Stage III Confidence
Head Neck L-Shoulder L-Elbow L-Wrist

g2g1 g3

Context 
Features

Context 
Features

Stage I 
Confidence Maps

Stage II 
Confidence Maps

Stage III 
Confidence Maps

Image
 Features

Head Neck L-Shoulder L-Elbow L-Wrist



Stage III Confidence
Head Neck L-Shoulder L-Elbow L-Wrist

g2g1 g3

Context 
Features

Context 
Features

Stage I 
Confidence Maps

Stage II 
Confidence Maps

Stage III 
Confidence Maps

Image
 Features

Head Neck L-Shoulder L-Elbow L-Wrist



g1

Stage I 
Confidence MapsImage

 Features

Inference Machines for Pose Estimation
Reduces structured prediction to a sequence of simple classification problems



g2

Context 
Features

Stage II 
Confidence MapsImage

 Features

g1

Stage I 
Confidence MapsImage

 Features

Inference Machines for Pose Estimation
Reduces structured prediction to a sequence of simple classification problems



g3

Context 
Features

Stage III 
Confidence MapsImage

 Features

g2

Context 
Features

Stage II 
Confidence MapsImage

 Features

g1

Stage I 
Confidence MapsImage

 Features

Inference Machines for Pose Estimation
Reduces structured prediction to a sequence of simple classification problems



Level 1 parts Level 2 parts Level 3 parts

Larger Composite Parts are Easier to Detect

[Bourdev et al., CVPR 2009]
[Sun et al., CVPR 2012]
[Duan et al., BMVC 2012]
[Singh et al., ECCV 2012]
[Pishchulin et al., CVPR 2013] etc.
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Temporal Sequence
(No temporal consistency enforced)
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Pose Machines
Reduces structured prediction to a sequence of simple classification problems
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Pose Machines

In Natural Language Processing
[Cohen and Carvalho, 2005] [Daume III et al., 2006]

In Computer Vision
[Kou et al., 2007] [Tu and Bai, 2008] [Munoz et al., 2010]
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Pose Machines

Training reduces to training multiple 
supervised classifiers
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Pose Machines

Spatial model is learned implicitly by the 
classifiers in a data-driven fashion
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Pose Machines

Spatial model is learned implicitly by the 
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Models a fully connected graph. 
Information from parts in all levels

 are used for prediction

Inference Machines for Pose Estimation
Unrolling message passing inference in graphical models
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Evaluation: Datasets
LEEDS Sports Dataset FLIC Dataset
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(a) Large Configuration Space (b) Appearance Variation
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Fig. 5: (a) Comparison to state-of-the-art on FLIC Elbow and wrist localization
accuracy on the FLIC dataset. We achieve higher accuracies for both joints compared
to the state-of-the-art [11]. (b) E↵ect of number of stages. We plot the change
in accuracy with the number of stages in the sequence. We observe that including a
second stage which uses contextual information greatly increases the performance. We
also observe a slight improvement with the incorporation of an additional third stage.
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Fig. 6: E↵ect of number of stages on LSP. We plot the change in accuracy with
the number of stages in the sequence for di�cult landmarks on the LEEDS Sports
dataset. The additional stages improve the performance especially of di�cult parts
like the elbows and wrists.

to recognize the pose of the upper body. We employ a two-level hierarchy, with
the finest level of the hierarchy comprising of seven parts corresponding to the
annotated anatomical landmark locations, the second level comprising of three
composite parts corresponding to each of the arms and one for the head and
shoulders. Parameter choices were guided by a grid search using a development
subset of the training dataset comprising of 200 images. We use the accuracy
metric specified in [11]. In Figure 5a we plot the accuracy of the wrist and elbow
joints. Our approach shows a significant improvement over the state of the art
[11]. We show qualitative results of our algorithm on samples from the FLIC
dataset in Figure 8.

E↵ect of the number of stages. We study the e↵ect of increasing the num-
ber of stages T in the inference machine. Figure (5b) plots the part localization
accuracy as a function of the distance from the ground truth label on the FLIC
dataset. We see that predicting part location only based on image features (T=
1) results in poor performance. The addition of a second stage (T= 2) that in-
corporates contextual information results in a dramatic increase in the accuracy.
An additional third stage (T= 3) adds a minor increase in performance on this
dataset.

r

Percentage Detected Joints
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Fig. 8: Qualitative example results on the FLIC dataset. Our algorithm is able
to automatically learn a spatial model and correctly localize traditionally di�cult parts
such as the elbows and wrists.

Fig. 9: Failure Modes. Typical failure modes include severe occlusion of parts and
rare poses, for which too few training samples exist in the training set. The method is
also prone to error when there are multiple people in close proximity.
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Fig. 5: (a) Comparison to state-of-the-art on FLIC Elbow and wrist localization
accuracy on the FLIC dataset. We achieve higher accuracies for both joints compared
to the state-of-the-art [11]. (b) E↵ect of number of stages. We plot the change
in accuracy with the number of stages in the sequence. We observe that including a
second stage which uses contextual information greatly increases the performance. We
also observe a slight improvement with the incorporation of an additional third stage.
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Fig. 6: E↵ect of number of stages on LSP. We plot the change in accuracy with
the number of stages in the sequence for di�cult landmarks on the LEEDS Sports
dataset. The additional stages improve the performance especially of di�cult parts
like the elbows and wrists.

to recognize the pose of the upper body. We employ a two-level hierarchy, with
the finest level of the hierarchy comprising of seven parts corresponding to the
annotated anatomical landmark locations, the second level comprising of three
composite parts corresponding to each of the arms and one for the head and
shoulders. Parameter choices were guided by a grid search using a development
subset of the training dataset comprising of 200 images. We use the accuracy
metric specified in [11]. In Figure 5a we plot the accuracy of the wrist and elbow
joints. Our approach shows a significant improvement over the state of the art
[11]. We show qualitative results of our algorithm on samples from the FLIC
dataset in Figure 8.

E↵ect of the number of stages. We study the e↵ect of increasing the num-
ber of stages T in the inference machine. Figure (5b) plots the part localization
accuracy as a function of the distance from the ground truth label on the FLIC
dataset. We see that predicting part location only based on image features (T=
1) results in poor performance. The addition of a second stage (T= 2) that in-
corporates contextual information results in a dramatic increase in the accuracy.
An additional third stage (T= 3) adds a minor increase in performance on this
dataset.
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Efficient Prediction (~10 fps)
CPU GPU (GeForce GTX590)

0

75

150

225

300

Image Features (HOG) Boosted Random Forests Context Feature Computation Total

Pose Machines Computation time (ms)

Figure 6.6: Performance Comparison. Our CPU implementation currently runs at approxi-
mately 3fps, while our current GPU implementation runs at 10fps.

tecture by exploiting GPU parallelization. In addition, we will investigate methods
for distributing the training of the pose machine across multiple cores and multiple
machines.

6.3.1 Real-time Pose Machines on GPUs

The main computations in the Pose Machines architecture are highly parallelizable
over image locations. There are three main types of computation in the Pose Machine
architecture, each of which happen independently at each location z in the image:

• Image Feature Computation: A local image descriptor (HOG) is computed
for the patch extracted centred at location z

• Prediction: Multi-class predictions are made using a supervised classifier
(such as a Boosted Random Forest)

• Context Feature Computation: Context features are computed for each
location z from confidence maps of the previous stage.

We show plot the current performance comparison of our implementation using
CPU vs. GPU oin Figure 6.6. We follow the work of Sharp (2008) in order to

72

m
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Fast and Parallelizable Inference
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Choice of Classifier
Boosted Random Forest with a Max-Margin Loss Functional

L(f) = �

2
kfk2 +

X

i

max (0, 1� f(xi, yi) + f(xi, y))

Functional Sub-gradient Descent == Boosting



Choice of Classifier

Figure 4: Part localization performance of a multi-part classifier with channel features comparing
the use of a random forest (left block) with a boosted random forest (right block).

O↵set Features vs. Patch Features

The deeper stages of the inference machines take as input messages from the neighboring parts.
These messages take the form of features computed on the outputs of each part’s scoremap at
the location. We evaluate two types of context features - 1) patch context, which is essentially
concatenated downsampled patches around the location in each scoremap and 2) peak o↵sets,
which are o↵sets to the peaks in each scoremap from the location.
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FLIC: Multi-part offset context
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FLIC: Multi-part both context

Figure 5: Part localization performance of a 2-stage multipart inference machine with patch
features (left) and with peak o↵set features (right)

We notice that each feature provides an improvement in di↵erent regions of the accuracy
curves. We also note that using both features together performs better than using
either one.
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