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Part Detection using Local Image Evidence

Multi-class classification of each patch into one of P part-types + background

Image
Image Location » ~ Features

Parts have highly multi-modal
appearance variation

Use a high-capacity supervised
oredictor capable of handling
Multi-moadal data

Boosted Random Forests

Breiman, 2001] [Friedman, 2001]
Caruana et al., 2009
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Multi-class classification of each patch into one of P part-types + background
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Local Image evidence Is weak
Certain parts are easier 1o detect than others
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Larger Composite Parts are Easier to Detect

Level 1 parts Level 2 parts Level 3 parts

Bourdev et al., CVPR 2009]

Sun et al.,, CVPR 2012]

Duan et al., BMVC 2012]

Singh et al., ECCV 2012]
Pishchulin et al., CVPR 2013] etc.
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INnference Machines for Pose Estimation

Unrolling message passing inference in graphical models

Replace product
with classifier

Models a fully connected graph.
b(zi) < g({v;(x:)}jen) Information from parts i@ gll levels
- are used for prediction

Messages consist of
context feature computations

Munoz et al., ECCV 2070, Ross et al., CVPR 20117]



Double Counting

Input Image Estimated Pose Max Marginal
(left ankle)

Tree Structured Model
Yang and Ramanan, 2011}



Double Counting

Input Image Estimated Pose I\/Iax Marginal Estimated Pose Stage |
(left ankle) Confidence
Tree Structured Model Pose Machines

Yang and Ramanan, 2011}



Double Counting

l"... 1 B
avad ,

Input Image Estimated Pose Max Marginal Estimated Pose Stage | Stage |
(left ankle) Confidence Confidence
Tree Structured Model Pose Machines

Yang and Ramanan, 2011}



Double Counting

Input Image Estimated Pose Max Marginal Estimated Pose Stage | Stage | Stage I
(left ankle) Confidence Confidence Confidence
Tree Structured Model Pose Machines

Yang and Ramanan, 2011}



Detection + Pose Estimation




Detection + Pose Estimation

Confidence from Detection Level



Detection + Pose Estimation

Confidence from Detection Level



Detection + Pose Estimation
1










P — e e iy




- '.‘ ,-f'f
il

T ir_ eprrar—

P S ot




T—

S~

—— L ] E—— .‘." —a B -
—— rf’l"'m & -
& i - - o -
4 { Wi el .

i~




Evaluation: Datasets
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Fvaluation: FLIC

FLIC: Localization Accuracy
100

—— MODEC [Sapp 13] elbow acc
== == MODEC [Sapp 13] wrist acc
poseMachines (Ours) elbow acc
== == poseMachines (Ours) wrist acc

0o
o
T

——
2 60[ -
;5 40t 0000 £
20 S

5 10 15 20 Percentage Detected Joints
Normalized Distance Threshold (pixels)



- FLIC

|OnN

Evaluat




\ &
P
V
{
¥y 5
-~ ~ . *
..;
¥
il
y %y
fw |14 ,
78 -; h?,
-
-
—ayhre

-

i

| W._E,._:::a_- | os =
..‘.

iy

,7
N
URE

FERCS

e

e
I~

5
VO
&
&)

TELEZ




L EEDS

Analysis

Performance variation with number of stages
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FPose Machines: Articulated Pose Estimation via Intference Machines

Stage | Stage | Stage |l
Image ~ Confidence Maps Image Confidence Maps Image Confidence Maps
Features Features ‘ Features
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_ocal Image evidence is weak Sequential classification with modular architecture
Part context Is a strong cue Implicitly learn rich spatial and

| arge composite parts are easier to detect hierarchical relationships
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Stacked Generalization, Wolpert et. al



# of Samples
I

[

.

Stacking

—_
N
’—l

w(za 1b2)

T

i
v
S,

v

Overfits to optimistic context

Stacked Generalization, Wolpert et. al



A A A

AR RGP B

56 ¢
: %

So|dweg JO #

Stacking




Each classifier associated
with a partition of the data

—
N
fo
o e
- 1
W I -
N —
V. -
O —
H o
-
I
Y
L
-

;
?

Nr—\
I\

Stacking




Each classifier associated
with a partition of the data

—
N
D
o e
= ¥
3 I -
7 —
V. -
O -
H O
-
I
Y
o
.

;
?

Nr—\
I\

Stacking

New dataset created by
by using classifier on its
neld out data




Choice of Classifier

Boosted Random Forest with a Max-Margin Loss Functional

£0F) = SIAI2 + D maa (0,1~ flisye) + (i)

Functional Sub-gradient Descent == Boosting



Choice of Classifier
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