Depth-of-Field Analysis and Coded Aperture Imaging on XSlit Cameras

Jinwei Ye Yu Ji Wei Yang Jingyi Yu University of Delaware

Pinhole Cameras

XSlit Cameras

[Pajdla '01], [Zomet '03], [Yu & McMillan'04], [Ponce '09] ...

University of Delaware, Dept. of Computer & Info. Sciences

Imaging Applications Using XSlit Cameras

Panorama Stitching [Seitz '01] [Zomet '03] [Yu & McMillan '04]

Implementing XSlit Cameras

Implementing XSlit Cameras

Implementing XSlit Cameras

XSlit vs Pinhole Lenses: Better or Worse?

Our Contributions

Ray Geometry Analysis

- Ray transform operators through a single or relays of cylindrical lenses
- Aperture operators: study light efficiency and coded aperture imaging

Solit coded-aperture Imaging

- Robust devonvoluion vs. depth estimation
- Our solution: use separate codes for individual lenses

Our Tool: Ray Geometry Analysis

- Two Plane Parameterization [Levoy and Hanranhan '96]
- 2PP Re-Parameterization [Ng '05] [Yu'05] [Ding '08]

Rays in 3D Space

Our Tool: Ray Geometry Analysis

- Two Plane Parameterization [Levoy and Hanranhan '96]
- 2PP Re-Parameterization [Ng '05] [Yu'05] [Ding '08]

Our Tool: Ray Geometry Analysis

- Two Plane Parameterization [Levoy and Hanranhan '96]
 2PP Re-Parameterization [Ng '05] [Yu'05] [Ding '08]
 - U'V' plane S'T' plane $[u', v', s', t']^{\mathrm{T}} = L[u, v, s, t]^{\mathrm{T}}$ $1 - \Delta z$ Λz 0 $L(\Delta z) = \begin{vmatrix} 0 & 1 - \Delta z & 0 & \Delta z \\ -\Delta z & 0 & 1 + \Delta z & 0 \end{vmatrix}$ (u', v') $1 + \Delta z$ (s', t')

• Non-Axis Aligned: Add Rotation R $[u_o, v_o, s_o, t_o]^T = \mathbf{R}\mathbf{C}\mathbf{R}^T[u_i, v_i, s_i, t_i]^T$

XSlit Lens Ray Transform

Relay Two Orthogonal Cylindrical Lenses

XSlit Lens Ray Transform

Relay Two Orthogonal Cylindrical Lenses

XSlit Lens Ray Transform

Relay Two Orthogonal Cylindrical Lenses

XSlit Lens Operator

XSlit Lens Operator Concatenation of multiple linear operators $[u_o, v_o, s_o, t_o]^{\top} = \mathcal{L}(l)\mathcal{C}_v(f_2)\mathcal{L}^{-1}(l)\mathcal{C}_h(f_1)[u_i, v_i, s_i, t_i]^{\top}$ $= S(f_1, f_2, l)[u_i, v_i, s_i, t_i]^{\top}$ $\prod_{\mu'\nu'}$ ΠÌ Rear Lens Sensc $\Pi_{\mu\nu}$ Front Lens r_{o} x $z = l_2$ $z = l_1$
XSlit Lens Operator Concatenation of multiple linear operators $[u_o, v_o, s_o, t_o]^{\top} = \mathbf{L}(l)\mathbf{C}_v(f_2)\mathbf{L}^{-1}(l)\mathbf{C}_h(f_1)[u_i, v_i, s_i, t_i]^{\top}$ $= \mathbf{S}(f_1, f_2, l) [u_i, v_i, s_i, t_i]^\top$ $\Pi_{u'v'}$ Π Rear Lens Sensc $\Pi_{\mu\nu}$ Front Lens r_{o} `x $z=l_{2}$ $z = l_1$

XSlit Lens Operator Concatenation of multiple linear operators $[u_o, v_o, s_o, t_o]^{\top} = \mathcal{L}(l) \mathcal{C}_v(f_2) \mathcal{L}^{-1}(l) \mathcal{C}_h(f_1) [u_i, v_i, s_i, t_i]^{\top}$ $= S(f_1, f_2, l)[u_i, v_i, s_i, t_i]^{\top}$ $\Pi_{u'v'}$ Π Rear Lens $\Pi_{\mu\nu}$ Front Lens r_{o} x $z=l_{2}$ $z=l_1$

XSlit Lens Operator Concatenation of multiple linear operators $[u_o, v_o, s_o, t_o]^{\top} = \mathbf{L}(l) \mathbf{C}_v(f_2) \mathbf{L}^{-1}(l) \mathbf{C}_h(f_1) [u_i, v_i, s_i, t_i]^{\top}$ $= S(f_1, f_2, l)[u_i, v_i, s_i, t_i]^{\top}$ $\Pi_{u'v'}$ Π Rear Lens Π_{uv} Front Lens r_{o} х $z=l_{2}$ $z=l_1$

XSlit Lens Operator

Concatenation of multiple linear operators

XSlit Lens Operator Concatenation of multiple linear operators $[u_o, v_o, s_o, t_o]^{\top} = \mathcal{L}(l)\mathcal{C}_v(f_2)\mathcal{L}^{-1}(l)\mathcal{C}_h(f_1)[u_i, v_i, s_i, t_i]^{\top}$ $= \mathbf{S}(f_1, f_2, l) [u_i, v_i, s_i, t_i]^\top$ $\Pi_{u'v'}$ Π Rear Lens Π_{uv} Front Lens r_{o} x $z=l_{2}$ $z=l_1$

Ph.

$$A_{1}(v) = \begin{cases} 1 & |v| \le w_{1}/2 \\ 0 & else \end{cases}$$
$$A_{2}(u') = \begin{cases} 1 & |u'| \le w_{2}/2 \\ 0 & else \end{cases}$$

$$[u_{o}, v_{o}, s_{o}, t_{o}]^{\mathrm{T}} = L(l)C_{v}(f_{2})L^{-1}(l)C_{h}(f_{1})[u_{i}, v_{i}, s_{i}, t_{i}]^{\mathrm{T}}$$
$$= S(f_{1}, f_{2}, l)[u_{i}, v_{i}, s_{i}, t_{i}]^{\mathrm{T}}$$

$$A_{1}(v) = \begin{cases} 1 & |v| \le w_{1}/2 \\ 0 & else \end{cases}$$
$$A_{2}(u') = \begin{cases} 1 & |u'| \le w_{2}/2 \\ 0 & else \end{cases}$$

$$[u_{o}, v_{o}, s_{o}, t_{o}]^{\mathrm{T}} = L(l)C_{v}(f_{2})L^{-1}(l)C_{h}(f_{1})[u_{i}, v_{i}, s_{i}, t_{i}]^{\mathrm{T}}$$
$$= S(f_{1}, f_{2}, l)[u_{i}, v_{i}, s_{i}, t_{i}]^{\mathrm{T}}$$

$$A_{1}(v) = \begin{cases} 1 & |v| \le w_{1}/2 \\ 0 & else \end{cases}$$
$$A_{2}(u') = \begin{cases} 1 & |u'| \le w_{2}/2 \\ 0 & else \end{cases}$$

$$[u_o, v_o, s_o, t_o]^{\mathrm{T}} = L(l) \frac{C_v(f_2) L^{-1}(l) C_h(f_1) [u_i, v_i, s_i, t_i]^{\mathrm{T}}}{= S(f_1, f_2, l) [u_i, v_i, s_i, t_i]^{\mathrm{T}}}$$

F-number:
$$Np = \frac{f}{W}$$

• Pinhole Lens: f-number N_p

$$E_{spherical} = BN_p^2 \cos^4 \alpha$$

B – source irradiance; $\cos^4 \alpha$ – cosine-fourth law of illumination falloff.

• Pinhole Lens: f-number N_p $E_{spherical} = BN_p^2 \cos^4 \alpha$

Solit Lens: Behaves as two spherical thins lenses: f-number N₁ & N₂

$$E_{XSlit} = BN_1N_2\cos^4\alpha$$

B – source irradiance; $\cos^4 \alpha$ – cosine-fourth law of illumination falloff.

• Pinhole Lens: f-number N_p $E_{spherical} = BN_p^2 \cos^4 \alpha$

Solit Lens: Behaves as two spherical thins lenses: f-number $N_1 \& N_2$

$$E_{XSlit} = BN_1N_2\cos^4\alpha$$

B – source irradiance; $\cos^4 \alpha$ – cosine-fourth law of illumination falloff.

• If
$$N_1N_2 = N_p^2$$
, we have $E_{spherical} = E_{XSlit}$ TESL

• Pinhole Lens: f-number N_p $E_{spherical} = BN_p^2 \cos^4 \alpha$

Solit Lens: Behaves as two spherical thins lenses: f-number
$$N_1 \& N_2$$

$$E_{XSlit} = BN_1N_2\cos^4\alpha$$

B – source irradiance; $\cos^4 \alpha$ – cosine-fourth law of illumination falloff.

• Setup:

All three lenses have the same focal length

Setup:

- All three lenses have the same focal length
- Vertical XSlit lens focus at z_{front} = l₁ and the horizontal XSlit lens focus at z_{back} = l₂; Sphereical lens focuses at z_{front}

Setup:

- All three lenses have the same focal length
- Vertical XSlit lens focus at z_{front} = l₁ and the horizontal XSlit lens focus at z_{back} = l₂; Sphereical lens focuses at z_{front}

XSlit lens blur scale:

$$b_v = (\frac{z}{z - l_1} - \frac{l_1}{f})w_1$$
 and $b_h = (\frac{z}{z - l_2} - \frac{l_2}{f})w_2$

Setup:

- All three lenses have the same focal length
- Vertical XSlit lens focus at z_{front} = l₁ and the horizontal XSlit lens focus at z_{back} = l₂; Sphereical lens focuses at z_{front}

XSlit lens blur scale:

$$b_v = (\frac{z}{z - l_1} - \frac{l_1}{f})w_1$$
 and $b_h = (\frac{z}{z - l_2} - \frac{l_2}{f})w_2$

• Spherical lens blur scale: $b = b_v$

Setup:

- All three lenses have the same focal length
- Vertical XSlit lens focus at z_{front} = l₁ and the horizontal XSlit lens focus at z_{back} = l₂; Sphereical lens focuses at z_{front}

XSlit lens blur scale:

Setup:

- All three lenses have the same focal length
- Vertical XSlit lens focus at z_{front} = l₁ and the horizontal XSlit lens focus at z_{back} = l₂; Sphereical lens focuses at z_{front}

• XSlit lens blur scale: $b_v = (\frac{z}{z-l_1} - \frac{l_1}{f})w_1$ and $b_h = (\frac{z}{z-l_2} - \frac{l_2}{f})w_2$

• Spherical lens blur scale: $b = b_v$

a
$$\mathbf{z} < \mathbf{z}_{inter}$$
: $b_h > b = b_v$

XSlit incurs more horizontal blur

Setup:

- All three lenses have the same focal length
- Vertical XSlit lens focus at z_{front} = l₁ and the horizontal XSlit lens focus at z_{back} = l₂; Sphereical lens focuses at z_{front}

• XSlit lens blur scale: $b_v = (\frac{z}{z-l_1} - \frac{l_1}{f})w_1$ and $b_h = (\frac{z}{z-l_2} - \frac{l_2}{f})w_2$ • Spherical lens blur scale: $b = b_v$ • XSlit incurs more horizontal blur • $z > z_{inter}$: $b_h > b = b_v$ • XSlit incurs more horizontal blur

University of Delaware, Dept. of Computer & Info. Sciences

Depth

Experiments

Coded Aperture Imaging

Produce invertible PSFs for depth estimation and extended Depth-of-Field (DoF)

Coded Aperture Imaging

Produce invertible PSFs for depth estimation and extended Depth-of-Field (DoF)

Coded Aperture Imaging

Produce invertible PSFs for depth estimation and extended Depth-of-Field (DoF)

Coded Aperture Imaging

Produce invertible PSFs for depth estimation and extended Depth-of-Field (DoF)

Coded Pattern Design

Code Design Dilemma

- Better depth discrepancy: Code with zero crossings [Levin '07]
- Robust deconvolution: Code that is broadband [Veeraraghavan '07]
- One possible solution: Capture twice, each with a different coded pattern [Zhou '09]

Our Solution: Dual Aperture Coding

University of Delaware, Dept. of Computer & Info. Sciences

XSlit Coded Imaging

Solit defocus is formed by convolving two orthogonal 1D kernels

University of Delaware, Dept. of Computer & Info. Sciences

XSlit Coded Imaging

Solit defocus is formed by convolving two orthogonal 1D kernels

Vertical aperture: Broadband for invertibility

University of Delaware, Dept. of Computer & Info. Sciences

XSlit Coded Imaging

XSlit defocus is formed by convolving two orthogonal 1D kernels

Vertical aperture: Broadband for invertibility
Horizontal aperture: high depth discrepancy

University of Delaware, Dept. of Computer & Info. Sciences

Synthetic Result

Input Shape Image

Ground Truth Depth Map

TESL Coded Aperture

TESL Depth Map

XSlit Coded Aperture

Our Depth Map

Synthetic Result

Input Shape Image

Ground Truth Depth Map

TESL Coded Aperture

TESL Deconvolution Result

XSlit Coded Aperture

Our Deconvolution Result

Real Result

Captured Image

Deblurred Result

Recovered Depth Map

Real Result

Captured Image

Recovered Depth Map

Deblurred Result

Conclusions

- Non-centric cameras can be useful (even with lenses)!
- A ray-geometry framework that enables
 - Lens transform analysis
 - Aperture analysis
 - Defocus and light efficiency analysis
- XSlit Coded Aperture Imaging
 - Address the dilemma on code pattern designs

Future Work

Sensor Front:

- Alternative XSlit lens designs
- Alternative LF-camera designs

Algorithm Front:

- Use ray geometry to model Seidel aberration [Tang and Kutulakos '13]
- Exploit the shape of the blur kernels
- Other XSlit imaging properties

Scene-aware Coded Aperture

Acknowledgement

 Shree Nayar and Shmuel Peleg
The National Science Foundation and the Air Force Office of Scientific Research

Acknowledgement

Shree Nayar and Shmuel Peleg The National Science Foundation and the Air Force Office of Scientific Research

Danke schön!

Thank You !