
PASCAL Workshop on

Stability and Resampling
Methods for Clustering
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Overview
I Stability for model selection – literature review

I Practice vs. theory – many questions

I Some ideas to solve some of the questions
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The principle of stability

Scientific results should be reproducible.

I If two researchers collect similar data by similar methods and
apply the same algorithm, the outcomes should be similar.

Ideally, would like to have algorithms which are robust

I ... with respect to the sampling of the data

I ... with respect to the noise in the data

I ... with respect to numerical issues

Consider this as a minimal requirement for any machine learning
algorithm.
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Stability as a tool for model selection in clustering

Model selection for clustering is difficult in general:

• Don’t have ground truth
• Difficult to evaluate clustering results

• Difficult to compare clusterings.

Thus idea: evaluate clusterings indirectly using stability.

• Want that our results are stable.

• Hence, choose parameter for which the result is most stable.

• In practice, this often works

Theory: ???
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Stabilty – the general principle
I Given a data set X1, ..., Xn, a clustering algorithm A
I For different values of k (=number of clusters):

I draw subsamples of the given data
I cluster them in k clusters using A

I compare the resulting clusterings

I define some distance between the clusterings
I compute some notion of “stability” depending on how much

the clustering distances vary

I choose the parameter k which gives the “best” stability (where
“best” is defined in different ways)
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The toy figure in favor of stability

How many clusters?
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Example: how many clusters? 

Sample 1                          Sample 2

k = 2:

k = 5: 
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The different steps involved in
stability
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Generating artificial data sets

• Draw a subsample of the original data set.
Levine and Domany (2001), Ben-Hur, Elisseeff, and Guyon (2002), Fridlyand and

Dudoit (2001), Lange, Roth, Braun, and Buhmann (2004)

• Use the original data set, but add random noise to the data
points Bittner et al. (2000)

• If the original data set is high-dimensional: use different random
projections in low-dimensional spaces, and then cluster the
low-dimensional data sets Smolkin and Ghosh (2003)

• If we are in a model-based framework, sample data from the
model Kerr and Churchill (2001)
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Generating artificial data sets (2)
In all cases, there is a trade-off which has to be treated carefully:

• If we change the data too much (subsample is too small; noise is
too large), then we might destroy the structure we want to
discover by clustering.

• If we change the data too little, then more or less everything will
be stable.
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How to use the clustering algorithm

• In the stability approach, we usually fix a clustering algorithm
and its parameters

• (This is different from standard ensemble methods, where people
vary the algorithm rather than the data set)

• But often people use randomized algorithms (e.g., random
initialization in K -means); here randomization different for each
run of the algorithm
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Distances between the clusterings

If clusterings are defined on the same data set: easy.

Count how many pairs of points end up in the same or in different
clusters according to both clusterings. Use this to build various
distance/similarity scores:

• Rand Index

• Jacard Index

• Hamming distance

• Variation of Information Meila (2003)

• ... many more ...
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Distances between the clusterings (2)
To compare clusterings on different data sets: two approaches:

Using a restriction operator:

I compute the joint domain S = {X1, ..., Xn} ∩ {X ′
1, ..., X

′
m} of

both clusterings

I Restrict both clusterings to S ; C ′1, C ′2
I Compute distance between C ′1 and C ′2 (easy as now defined on

same domain)

I Note that this only makes sense if the two domains have a
reasonable overlap.

Problem: we loose a lot
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Distances between the clusterings (3)
Using an extension operator:

I Extend both clusterings from their domain to the domain of
the other clustering (or even to the whole underlying space)

I Then compute a distance between the resulting clusterings
(easy as now defined on same domain)

I For some algorithms there exist natural extensions:
I K -means (just assign new points to the closest cluster center)
I single linkage (assign new points to the same cluster as the

closest data point belongs to)
I spectral clustering (using integral operators)
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Distances between the clusterings (4)
I If one only needs to extend to a few new points: greedy

heuristic

I Otherwise: use a classifier as extension operator!
I Classifier should “fit” to clustering.
I Prototype classifier for K -means
I Nearest-neighbor classifier for single linkage
I Often not clear which one to use.

Problem: what bias does classifier introduce to stability?
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Which clusterings to compare?

• The clustering of the original data set with the clustering of a
subsample Levine and Domany (2001)

• Clusterings of overlapping subsamples
Ben-Hur et al. (2002)

• Clusterings of disjoint subsamples
Fridlyand and Dudoit (2001), Lange et al. (2004)

End up with an empirical distribution over distances/similarities
between those clusterings, for different values of k .
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Figure 3: Left: Scatter plot of a mixture of 4 Gaussians. Center: Histogram of the correlation similarity

measure; right: overlay of the cumulative distributions for increasing values of .

As a clustering algorithm we use the average link hierarchical clustering algorithm .

The advantage of using a hierarchical clustering method, is that the same set of trees

can be used for all values of , by looking at different level of the tree each time. To

tackle the problem of outliers, we cut the tree such that there are clusters, each of

them not a singleton (thus the total number of clusters can be higher than ).

We begin with the data depicted in Figure 1, which is a mixture of four Gaussians.

The histogram of the score for varying values of is plotted in figure 3. We make

several observations regarding the histogram. At it has a peak at 1, since

almost all the runs discriminated between the two upper and two lower clusters. At

most runs separated the two lower clusters, and at most runs found the

“correct” clustering as is reflected in the distribution of scores that is still close to 1.0.

At there is no longer one preferred solution, as is seen by the wide spectrum of

similarities. We remark that if the clusters were well separated, or the centers arranged

more symmetrically, there wouldn’t have been a preferred way of clustering into 2 or

3 clusters as is the case here; in that case the similarity for would have been

low, and increased for .

The next dataset we considered was the yeast DNA microarray data of Eisen

et. al. . We have used the MYGD functional annotation as labels. We chose the 5

functional classes that were most learnable by SVMs , and noted by Eisen et. al.

to cluster well . We looked at the genes that belong uniquely to these 5 functional

classes. This gave a dataset with 208 genes and 79 features (experiments) in the

following classes:

1. Tricarboxylic acid cycle or Krebs cycle (14 genes)

6

Ben-Hur et al. (2002)
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Stability scores

Now we need to define when we say the results are “stable”:

• Most people use: stability = mean(distances between
clusterings)

• Some people use: stability = area under the cumulative
distribution function of the distance scores.
Ben-Hur et al. (2002), Bertoni and Valentini (2007)

• The empirical distribution of course contains more information,
for example the number of modes. But as far as I can see,
nobody has used this information.
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Normalization

Note: stability(k) scales with k , independently of the structure of
the data. Need to normalize!

Normalization using a reference null distribution: Fridlyand and Dudoit

(2001), Bertoni and Valentini (2007)

• Repeatedly sample random artificial data sets from some null
distribution (e.g the uniform distribution)

◦ Uniform distribution on data domain

◦ Scramble features of the data points

• Apply the clustering algorithm to the uniform data sets and
compute stability scores. Leads to a distribution of scores
stabilitynorm,r (where r is an index over the repetitions)
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Normalization (2)
Normalization by random labels: Lange et al. (2004)

• For each of the artificial data sets:

• Instead of clustering it, assign random cluster labels.

• Then compute the distances between the random clusterings,
and the corresponding stability score. ; stabilitynorm(k)
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Selecting K , finally

First approach:

minimize normalized stability score, i.e.

K = argmin stability(k)/stabilitynorm(k)

Levine and Domany (2001), Ben-Hur et al. (2002), Lange et al. (2004)
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Selecting K , finally (2)
Second approach: use some kind of statistical test:

• Compare the actual similarity score to the distribution of random
similarity scores.

• For each k , test whether stability(k) it is significantly different
of stabilitynorm(k).

◦ Using bootstrap test: Fridlyand and Dudoit (2001)

◦ Using approximation by a χ2-test Bertoni and Valentini (2007)

◦ Using test based on Bernstein inequality Valentini et al., submitted

• Among the significant k , choose the one which is most
significant.
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Stability in theory



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

S
ta

b
ili

ty
J
u
n
e

2
0
0
7

22

Negative results on stability

Formalize what we mean by stability:

• Consider a clustering algorithm A which minimizes some
empirical cluster quality function Qemp.

• Assume that the algorithm always finds a global minimum of
Qemp (no convergence issues).

• Denote by Sn, S̃n two independent samples of size n drawn i.i.d.
according to probability distribution P.

• Let d be a distance function between clusterings.

• Define stability of algorithm A with respect to sample size n:

stab(A, n) := ES ,S̃ d(A(Sn),A(S̃n))
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Negative results on stability (2)
The counter-stability toy figures: stability even for “wrong” k

• Non-symmetric distribution: stability even for “wrong” k

Fig. 1. The left two panels show situations where the constructed clustering (depicted
by the dashed line) is highly instable, either because the chosen number of clusters is
too small or too large. Note that both figures depict very symmetric situations. The
right two panels show situations where clustering algorithms return stable results even
though they construct a wrong number of clusters. Note that those two figures are not
symmetric.

case by considering the set of ε-minimizers of the objective function (Rakhlin
and Caponnetto, 2005). The set of ε-minimizers of a function is the set of all
clusterings for which the quality function is at most ε from the minimal value. If
we now know that we only have enough sample points to estimate the objective
function up to precision ε, then the instability in the algorithm consists in “ran-
domly” picking one of the clusterings in the set of ε-minimizers. In this paper
we mainly focus on the first kind of stability. Therefore, we mainly consider the
asymptotic behavior of stability as sample sizes grow to infinity.

In this work we analyze the behavior of stability of a large abstract family of
clustering algorithms - algorithms that are driven by an objective function (or
’risk’) that they aim to minimize. We postulate some basic abstract requirements
on such algorithms (such as convergence in probability to a minimum risk solu-
tions as cluster sizes grow to infinity), and show that for algorithms satisfying
these requirements, stability is fully determined by the symmetry structure of
the underlying data distribution. Specifically, if the risk has a unique minimizer
the algorithm is stable, and if there exist a non-trivial symmetry of the set of
risk-minimizing solutions, stability fails. Since these symmetry parameters are
independent of the number of clusters, we can easily prove that in many cases
stability fails to indicate the correct (or even a reasonable) number of clusterings.
Our results apply in particular to two large families of clustering algorithms, cen-
ter based clustering and spectral clustering.

We would like to stress that our findings do not contradict the stability results
for supervised learning. The main difference between classification and clustering
is that in classification we are only interested in some function which minimizes
the risk, but we never explicitly look at this function. In clustering however,
we do distinguish between functions even though they have the same risk. It is
exactly this fundamental difference which makes clustering so difficult to analyze.

• Uniform distribution on [0, 1]: k-means is stable for all k

For large n we often have stability for every k!!!
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Negative results on stability (3)
Theorem Ben-David, von Luxburg, and Pál (2006), Ben-David, Pál, and Simon (2007)

• Assume that Q has a unique global minimum. Then any
clustering algorithm A which minimizes Qemp in some consistent
way is stable for large n, that is lim supn→∞ stab(A, n) = 0.

• Assume that the global minimum of Q is not unique. Then A is
not stable.
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Large n – stability for every k! 

! Several global minima are often induced by symmetry

! Natural distributions are usually not perfeclty symmetric 

! In this case for large n: every k is stable! 

Ben-David/Luxburg/Pal 2006 
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This view is also supported by Krieger and Green (1999), Rakhlin and

Caponnetto (2007)
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Where does this leave us?

Practitioners say: in applications stability often works.

Theoreticians say: at least in the limit for n →∞ it is problematic.

????
Where is the catch?
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Catch 1:
large vs. small sample size
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First catch: large vs. small sample size

The negative results only concern large sample size. What about
small sample size? One possible explanation:
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Stability for small n

We can only estimate the quality function q up to a certain 

accuracy.  

We cannot distinguish local and global minma. 

The smaller n, the more instable the algorithm. 
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Possible solution: “stability window”
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Work in progress

Stability as a criterion for model selection only works in a 

certain “window” of sample sizes: 

A good clustering qualtiy function has the following property: 

!For “the right k” it is already stable for small n

!For “a wrong k” it is only stable if n gets extremely large
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However, don’t find it likely that this really explains the
theory/practice gap.
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Catch 2:
global vs. local minimum
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Second catch: attaining the global minimum
I The negative results only concern algorithms which find the

global minimum of the objective function.

I However, most clustering algorithms try to solve NP hard
problems. In practice, they often only end in local minima.

I To improve the quality of the local optimum, one often uses
randomized algorithms (e.g., K -means with random
initialization). Then we have a completely different story!

I Instead of stability with respect to resampling we mainly
consider stability with respect to randomization of the
algorithm!
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Possible solution: exploring objective function

• Depending on initialization, the algorithm ends in different local
minima.

• Can use stability to measure how different those minima are.
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left: objective function for fixed k = 2;
right: histogram of distances of solutions.
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Possible solution: exploring objective function (2)

To make this argument rigorous, would need to prove:
I Given a probability distribution with k “true clusters”

I Assume we run the clustering algorithm with many different
initializations on one (or several) samples.

I Then, with high probability (over the randomization of the
algorithm, and if applicable with respect to the sampling):

I stability “finds” the “right k”
I Reason: for “the right k”, the objective function only has one

distinct minimum in which the algorithm ends.

Big question on the way: how does the global geometry (e.g.,
number of local minima) of the objective function depend on the
underlying distribution (e.g., number of clusters)?
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Possible solution: exploring objective function (3)
Note that for many clustering algorithms:

• The qualitative behavior (“global geometry”) of the objective
functions is the same for most samples.

• Then resampling of the data is not really the crucial part!

• Can simply run algorithm on same sample with different
randomization of the algorithm (e.g., initialization)

• This scenario is not covered in the negative arguments ...
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Catch 3: What is “the right K”,
actually?
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The “correct K”, first approach

Define: Given the distribution P, what is the correct clustering?

I Sometimes this already implies what “the true K” is.

I Example: “Clusters are disconnected components of the
density.”

I Here K is uniquely defined.

I In most cases, have a parameter which directly or indirectly
controls the number of clusters.

I Example: “Clusters are disconnected components of level sets
of the density.” Here depending on the level t, different
number of K possible.

I Example: K -means
I Then we need a second definition: Given P, what is the

“correct” number of clusters?

Given a finite sample, now want to estimate K by some Kn.
Have to prove that estimator converges to the correct one.
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The “correct” K , second approach
I Even if we know P , we can justify different numbers of

clusters, depending on the “the scale” or “the resolution” we
use to look at the distribution.
Example: “Clusters correspond to modes of the density.”

I We can even have infinitely many clusters of P .

I Now goal is different: On the finite sample, construct as many
reliable clusters as possible

I If n is small, only look for major clusters.
I The larger n, the more clusters should be constructed.
I Make sure that the clusters are not just sampling artifacts.
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Idea: hierarchy of cluster core sets

Constructing cluster core sets:

I Fix a clustering algorithm A and its parameters

I Fix a threshold parameter t ∈ [0, 1]

I Repeatedly draw subsamples and cluster them using A
I For each pair of points (x , y), evaluate frequency of ending up

in the same cluster: r(x , y) ∈ [0, 1]

I Compute cluster core sets: sets of points Xi1 , ..., Xis such that
for all pairs r(Xiu , Xiv ) ≥ t.

If we vary the threshold parameter t, get a hierarchy of core sets.
The threshold t controls the “confidence” we want to have.
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What I like about core set approach
I Makes statements about individual clusters (or even: pairs of

points)

I Allows “don’t know statement” for large parts of the space.

I The threshold parameter t does not change the resolution (or
number of clusters), but the “confidence” we have in the
clusters

I The intuition that “stability” serves as a “measure of
reliability” is more explicit.
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Using core sets to choose K?
I have to choose a parameter K for the basis clustering

algorithm

I then get a confidence statement whether this resolution leads
to reliable clusters

I Core set approach does not determine the true number of
clusters but just whether the given number of clusters leads to
reliable results

I Only makes a statement whether core sets are reliable, no
statement about remaining points.
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Core sets vs. “traditional” stability
I Don’t need to make statement about all clusters, can only talk

about “significant ones”

I Circumvents the question about “the right K”, don’t need to
come up with one value of K in the end

I Implicitly allows all parameters K for which the resulting
clusters are reliable.

I Thus the criticism outlined above does not apply, but the
reason is that we cheated a bit on the way. We simply changed
the question from “finding the right number of clusters” to
“finding all reliable clusters”.

I But maybe this is what people actually need in practice?
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Summary
I Many open issues and questions related to stability.

I It am reasonably convinced that stability indeed can be a very
useful tool.

I But in all cases, the theory of why, and more importantly,
when it works is missing!

Admittedly, I am quite puzzled about stability, don’t really know
what to believe and what not, and I am curious where all this is
leading to!



References

Ben-David, S., Pál, D., and Simon, H.-U. (2007). Stability of k
-means clustering. In N. H. Bshouty and C. Gentile (Eds.),
Conference on learning theory (COLT) (pp. 20–34). Springer.

Ben-David, S., von Luxburg, U., and Pál, D. (2006). A sober look
on clustering stability. In G. Lugosi and H. Simon (Eds.),
Proceedings of the 19th Annual Conference on Learning
Theory (COLT) (pp. 5 – 19). Springer, Berlin.

Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002). A stability based
method for discovering structure in clustered data. In Pacific
Symposium on Biocomputing (pp. 6 – 17).

Bertoni, A. and Valentini, G. (2007). Model order selection for
bio-molecular data clustering. BMC Bioinformatics, 8.

Bittner et al. (2000). Molecular classification of cutaneous
malignant melanoma by gene expression profiling. Nature,
406, 536 – 540.



References (2)
Fridlyand, J. and Dudoit, S. (2001). Applications of resampling

methods to estimate the number of clusters and to improve
the accuracy of a clustering method (Technical Report No.
600). ???

Kerr, M. K. and Churchill, G. A. (2001). Bootstrapping cluster
analysis: Assessing the reliability of conclusions from
microarray experiments. PNAS, 98(16), 8961 – 8965.

Krieger, A. and Green, P. (1999). A cautionary note on using
internal cross validation to select the number of clusters.
Psychometrika, 64(3), 341 – 353.

Lange, T., Roth, V., Braun, M., and Buhmann, J. (2004).
Stability-based validation of clustering solutions. Neural
Computation, 16(6), 1299 – 1323.



References (3)
Levine, E. and Domany, E. (2001). Resampling Method for

Unsupervised Estimation of Cluster Validity. Neural
Computation, 13(11), 2573 – 2593.

Meila, M. (2003). Comparing clusterings by the variation of
information. In Colt (p. 173-187).

Rakhlin, A. and Caponnetto, A. (2007). Stability of k-means
clustering. In B. Schölkopf, J. Platt, and T. Hoffman (Eds.),
Advances in neural information processing systems 19. MIT
Press, Cambridge, MA.

Smolkin, M. and Ghosh, D. (2003). Cluster stability scores for
microarray data in cancer studies. BMC Bioinformatics, 4.


	References

