Cluster stability analysis based on the assessment of individual clusters

Patrice Bertrand *

ENST Bretagne (France)

* joint work with G. Bel Mufti and L. El Moubarki

CEFI ESSEC (Tunisie)

Tübingen, July 2007

Partition stability

Several approaches:

- Clustering cross validation
- Effects of small changes in the data set:
 - a) Adding a noise

. . .

- b) Different sub-sampling schemes
- c) Random projections

Number of clusters: Roberts (1997), Levine and Domany (2001), Tibshirani, Walther and Hastie (2001), Tibshirani, Walther, Botstein *et al.* (2001), Ben-Hur *et al.* (2002), T. Lange *et al.* (2004), ...

Asymptotic case: Krieger and Green (1999), Ben David, von Luxburg and Pal (2006).

Outline

- 1) Introduction
- 2) Cluster stability w.r.t. cluster isolation and cluster cohesion
- 3) Illustration on artificial and real data sets
- 4) Partial Membership
- 5) Some conclusions and perspectives

Our notations

- $\bullet \ \mathfrak{X} \ \text{set}$ of objects of the data set
- \mathfrak{X}' sample drawn i.i.d. from \mathfrak{X}
- A_k k-partitioning algorithm
- $\bullet \ r$ sampling ratio

Stability based on sampling the data set

Levine & Domany (2001), Ben-Hur et al. (2002), ...

- Procedure:
 - 1. Using a large sampling ratio (0.9 > r > 0.7), draw i.i.d. two samples X'_1 and X'_2 from X.
 - **2.** Comparison of the partitions $A_k(\mathfrak{X}'_1)$ and $A_k(\mathfrak{X}'_2)$.
 - 3. Repeat N times ($N \ge 100$) step 1. and step 2.

Cluster stability w.r.t. \mathfrak{X} if $A_k(\mathfrak{X}'_1)$ and $A_k(\mathfrak{X}'_2)$ are similar for most of the pairs of samples \mathfrak{X}'_1 and \mathfrak{X}'_2 .

• Alternative: replace \mathfrak{X}'_2 by \mathfrak{X} .

Artificial data set

Correlation similarity

Asymptotic results

Empirical approach: Krieger and Green (1999) *Theoretical proofs:* Ben David, von Luxburg and Pal (2006)

For large sample size, stability is fully determined by the behavior of the objective function minimized by the clustering algorithm:

- If the objective function has a unique global minimizer, the algorithm is stable;
- Otherwise, the algorithm is unstable.

Example of a unique minimizer

A mixture of one gaussian distribution and one uniform distribution.

Example of instability from symmetry

A mixture of three gaussians

Example (continuing)

Stability measure of the partition vs. size of the data set

Some issues

For which purpose?

- a) well separated and/or homogeneous clusters;
- **b)** cluster interpretability.

Examples: data compression, data dissection.

How to identify 2 types of unstability?

- a) Several global minimizers;
- **b)** When *n* is moderately large and some clusters are adjacent.

How to asses stability values?

- a) Testing a null hypothesis of absence of structure;
- **b)** Comparing stability values for different parameter values.

A proposal for measuring cluster stability w.r.t. cohesion and isolation

Bertrand and Bel Mufti (2006)

- (a) Cohesion of a single cluster
- (b) Isolation of a single cluster
- (c) Stability of a single cluster
- (d) The same three characteristics for a partition
- (e) Influence of an individual object

1. Stability measures

Perturbation by proportionate stratified sampling

- Each perturbed data set is a sample.
- n_C = size of any cluster C in \mathcal{P} ;
- n'_C = size of $C \cap \mathfrak{X}'$
- Sampling ratio:

• Proportionate stratified sampling:

$$n'_C := \lfloor rn_C \rfloor$$
 so $n' \approx rn$.

Isolation of a cluster

• Isolation of cluster C:

"If two objects of \mathcal{X}' are not clustered together by $\{C, \mathcal{X} \setminus C\}$, then they are not in the same cluster of $\mathcal{Q} = A_k(\mathcal{X}')$."

- Measures to assess association rules;
- Loevinger's measure of rule $E \Rightarrow F$:

 $L(E \Rightarrow F) = 1 - P(E \cap \neg F) / P(E) P(\neg F)$

• *N* samples are necessary to faithfully estimate the isolation of *C*:

$$\mathfrak{X}'_1,\ldots,\mathfrak{X}'_N.$$

• Stability Measure:

$$t^{is}(C, \mathcal{X}') = 1 - \frac{n'(n'-1)m_{(\mathcal{X}';C,\overline{C})}}{2n'_C(n'-n'_C) m_{(\mathcal{X}')}},$$

where:

 $m_{(\mathcal{X}')}=$ number of pairs of (sampled) objects that are clustered together by $\mathcal{Q}=\mathsf{A}_k(\mathcal{X}')$

 $m_{(\mathcal{X}';C,\overline{C})}$ = number of previous pairs for which exactly one of the two objects belongs to C.

• $\overline{t}_N^{is}(C)$ = average of $t^{is}(C, \mathfrak{X}')$ for N samples \mathfrak{X}'_i .

Isolation between two clusters

• $\overline{t}_N^{is}(C,B)$: Isolation between cluster C and cluster B

"If an object is in $\mathfrak{X}' \cap C$ and another one in $\mathfrak{X}' \cap B$, then they remain not clustered together by \mathcal{Q} ."

• $\overline{t}_N^{is}(C)$ = weighted mean of $\overline{t}_N^{is}(C,B)$ for $B \in \mathcal{P}$

Isolation of a partition

• $\bar{t}_N^{is}(\mathcal{P})$: Isolation of all the clusters of \mathcal{P}

"If two objects of \mathfrak{X}' are not clustered together by \mathcal{P} , then they remain not clustered together by \mathcal{Q} ."

•
$$\overline{t}_N^{is}(\mathcal{P})$$
 = weighted mean of $\overline{t}_N^{is}(C)$ for $A \in \mathcal{P}$

Other cluster features

• $\bar{t}_N^{co}(C)$: Cohesion of cluster C.

"If two objects of \mathcal{X}' belong to C, then they remain clustered together by \mathcal{Q} ".

- $\overline{t}_N^{co}(\mathcal{P})$: Cohesion of partition \mathcal{P} . $\overline{t}_N^{co}(\mathcal{P}) =$ weighted mean of $\overline{t}_N^{co}(C)$ for $A \in \mathcal{P}$
- \bullet Stability of a cluster C
- \bullet Stability of a partition ${\cal P}$

Self learning the number of samples

• General notation: $\overline{t}_N(C) = \frac{1}{N} \sum_{i=1}^N t(C, \mathfrak{X}'_i)$

Which value of \boldsymbol{N} should be choosed?

- The central limit theorem
- Length of the approximate 95%-confidence interval

p-value of a stability measure.

Internal criterion Jain and Dubes (1988), Gordon (1994).

- Step 1. Define a null hypothesis H_0 that specifies the absence of cluster structure for the data set under investigation;
- Step 2. Estimate the probability significance (*p*-value), under *H*₀, of the observed value of the measure of stability by performing a Monte Carlo test

Random position hypothesis. The n points of the data set \mathcal{X} are equally likely in a region (convex hull of the data set).

"Optimal number" of clusters.

- k is an optimal number of clusters when partitional stability is a local maximum.
- refinement:
 - Stability of isolation and cohesion, separately.
 - Stability of a partition can be interpreted as a weighted average of the stability of its clusters.
 - *p*-value of each stability measure.

- 2. Comparison with other validation measures
- The index of Calinski and Harabasz (1974):

$$CH(k) = \frac{B(k)/(k-1)}{W(k)/(n-k)}$$

B(k) and W(k): between and within cluster sums of squares of the partition, respectively.

• The index of Krzanowski and Lai (1985):

$$KL(k) = |\frac{DIFF(k)}{DIFF(k+1)}|$$

$$DIFF(k) = (k-1)^{2/p}W(k-1) - (k)^{2/p}W(k),$$

p = number of features in the data set.

• The Gap statistic (2001):

$$Gap(k) = E^{\star}[log(W(k))] - log(W(k))]$$

Artificial data set

		Number of clusters (k)					
Index		2	3	4	5	6	
CH(k)		145	414	580*	494	446	
KL(k)		.26	3.36	3.89	1.39	5.95 *	
Gap(k)		0.17	0.82	1.05 *	0.96	0.89	
BBM(k)		.779	.958	.992 *	.914	.816	
P-value of $BBM(k)$	(%)	48 - 61	2.4 - 6.8	0 - 1	0 - 4.5	2.5 - 9.2	

* indicates the optimal number of clusters

Stability measures and *p*-values

		Isolation	Cohes	ion	Stabili	ty
		%		%		%
Cluster	1	.990 0−1	.980	0 - 5	.986	0 - 1
	2	.984 0−1	.992	0 - 2	.987	0 - 1
	3	1. 0-1	1.	0 - 1	1.	0 - 1
	4	.994 0−1	.996	0 - 2	.995	0 - 1
Partition		.992 0−1	.992	0 - 1	.992	0 - 1

Stability measures and *p*-values (5-partition)

		Isola	ation	Coł	Cohesion		bility
			%		%		%
Cluster	1	.993	0 - 1	.939	0 - 1	.973	0 - 1
	2	.993	0 - 1	.936	0 - 1	.972	0 - 1
	3	.989	0 - 5	.873	1 - 13	.945	0 - 8
	4	.696	32 - 49	.798	48 - 65	.716	34 - 50
	5	.727	29 - 47	.980	1 - 9	.777	22 - 39
Partition)	.915	0 - 4.5	.913	0 - 1	.914	0 - 4.5

Iris data

	Number of clusters (k)				
Index	2	3	4	5	6
CH(k)	795.7	1211.2	1266.4	1358.7 *	1154.4
KL(k)	4.83	6.01 *	1.30	1.12	1.19
Gap(k)	.68	1.28	1.48	1.61 *	1.39
BBM(k)	.992 *	.959	.881	.900	.870
P-value of $BBM(k)$ (%)	.3 - 3.4	6.7 - 11.9	> 34	5.2 - 9.4	4.9 - 9.6

* indicates the optimal number of clusters

Characterizing different types of unstability

Data set #1: 3 symmetrical Gaussians Partition: 2 clusters

$$n = 300$$

3 symmetrical gaussians (continuing)

Stability measures

	C_1	$\{C_2, C_3\}$	Partition
Cohesion	1	0.594	0.675
Isolation	0.676	0.676	0.676
Stability	0.731	0.639	0.675

Based on 1000 bootstrapped samples:

• $IC_{95\%} = [0.433, 1]$

Data set #2: Uniform data set Partition: 3 clusters

n = 300

Uniform data set (continuing)

Stability measures

	C_1	C_2	C_3	Partition
Cohesion	0.951	0.879	0.928	0.919
Isolation	0.936	0.877	0.940	0.918
Stability	0.949	0.877	0.936	0.918

Data set #3: 2 Gaussians with different variances Partition: 2 clusters

n = 300

Stability measures

	C_1	C_2	Partition
Cohesion	0.961	1	0.992
Isolation	0.984	0.984	0.984
Stability	0.980	0.991	0.988

Data sets #4: 2 Gaussians with same variances Partition: 2 clusters

Cluster sizes are increasing from 25 to 425 by step of 25, and then take values 500 and 1000.

 $50 \le n \le 1000$

Data sets #4 (continuing)

Cohesion of C_2 versus data size

Data sets #4 (continuing)

Stability of C_2 versus data size

Data sets #5: 2 Gaussians with same variances Partition: 2 clusters Only C_2 size increasing from 25 to 700

$$25 \le |C_2| \le 700$$

Data sets #5 (continuing)

Partition stability versus C_2 size

Data set #6: Mixture of 1 Gaussian and 1 uniform law Partition: 3 clusters

$$n = 200$$

Stability measures

	C1	C2	C3	Partition
Cohesion	1 (0 %)	0.953 (59 %)	1 (0 %)	0.984 (3 %)
Isolation	1 (0 %)	0.976 (16 %)	0.976 (14 %)	0.984 (4 %)
Stability	1 (0 %)	0.968 (28 %)	0.983 (9 %)	0.984 (3 %)

Two individual scores

$$J = \{1, \dots, N\},\$$

$$J(x) = \{j \in \{1, \dots, N\} : x \in \mathcal{X}'_j\},\$$

$$\mathcal{P}(x) = \{z \in X : x \text{ and } z \text{ are clustered together in } \mathcal{P}\},\$$

$$\mathcal{P}^{\star}(x) = \mathcal{P}(x) \setminus \{x\}.$$

• Partial Membership: $\widehat{M}(x,A) = \frac{1}{|J(x)|} \sum_{j \in J(x)} \frac{|\mathcal{P}_{j}^{\star}(x) \cap A|}{|\mathcal{P}_{j}^{\star}(x)|}$

• Partial Filiation:
$$\widehat{F}(x,A) = \frac{1}{|J(x)|} \sum_{j \in J(x)} \frac{|\mathcal{P}_j^{\star}(x) \cap A|}{a^{\star}}$$

• **Decomposition:** $\overline{t}_N^{is}(A) = 1 - \frac{1}{\widehat{p}} \sum_{x \in A} \frac{|J(x)|}{\sum_{x \in A} |J(x)|} \widehat{cF}(x, A)$

Membership scores of intermediary points *Iris data*

Objects (x)	Cluster	Iris cluster	J(x)	1	2	3
#84	2	1	405	.27	.73	0
#120	1	2	397	.88	.12	0
#122	2	2	387	.22	.78	0
#124	1	2	376	.70	.30	0
#127	1	2	403	.88	.12	0
#128	1	2	394	.68	.32	0
#134	1	2	398	.68	.32	0
#139	1	2	391	.88	.28	0
#150	2	2	391	.07	.93	0

Filiation scores of intermediary points *Iris data*

Objects (x)	Cluster	Iris cluster	J(x)	1	2	3
#84	2	1	405	.27	.78	0
#120	1	2	397	.89	.13	0
#122	2	2	387	.22	.83	0
#124	1	2	376	.75	.30	0
#127	1	2	403	.88	.15	0
#128	1	2	394	.75	.29	0
#134	1	2	398	.73	.32	0
#139	1	2	391	.88	.14	0
#150	2	2	391	.05	.98	0

Some conclusions and perspectives:

In the view of exploratory data analysis,

- For all values of *n*, the interpretation of stability values is easier with:
 - a) Stability measures that concern isolation and cohesion for each cluster;
 - b) Cumulative distribution function of the partitional stability measure.
- If a the cohesion of a cluster is assessed to be large, then its dispersion is certainly larger than its neighbors dispersions, but the converse is not true.
- Individual scores and small groups of outliers.
- Assuming "clusters of equal sizes", stability seems to be more informative for small and medium size data sets.