

Tracking Interacting Objects Optimally Using Integer Programming

ECCV'14

<u>Xinchao Wang</u>¹, Engin Türetken¹, François Fleuret^{2,1}, Pascal Fua¹ ¹EPFL, Lausanne, Switzerland ²Idiap, Martigny, Switzerland

Tracking two classes of objects that interact

Problem

Method

Experiments

Tracking two classes of objects that interact
 One class of object (i.e., container) "contain" the other (i.e., containee)

Tracking two classes of objects that interact
 One class of object (i.e., container) "contain" the other (i.e., containee)

Example

Cars-People

Tracking two classes of objects that interact
 One class of object (i.e., container) "contain" the other (i.e., containee)

Example

People-Bags

Experiments

Tracking two classes of objects that interact
 One class of object (i.e., container) "contain" the other (i.e., containee)

Example

Cars-People

Motivation

People-Bags

Method

Players-Basketball

Conclusion

Experiments

Track Objects Sequentially

Track Objects Sequentially

Track container first, and containee second

Problem

Track Objects Sequentially

Track container first, and containee second
 Not Optimal, for example:

Track Objects Sequentially
 Track container first, and containee second
 Not Optimal, for example:

Detection

Track Objects Sequentially
 Track container first, and containee second
 Not Optimal, for example:

Detection

Sequential Tracking Using KSP [1]

[1] Multiple Object Tracking using K-Shortest Paths Optimization, J. Berclaz, F. Fleuret, E. Türetken, P. Fua. PAMI 2011 Problem Motivation Method Experiments Conclusion

Tracking Objects Simultaneously

Tracking Objects Simultaneously

Intuition: the evidence of one object may reveal the presence or absence of another

Tracking Objects Simultaneously

Intuition: the evidence of one object may reveal the presence or absence of another

• Example:

Detection

Sequential Tracking Using KSP

Tracking Objects Simultaneously

Intuition: the evidence of one object may reveal the presence or absence of another

• Example:

Motivation

Problem

Sequential Tracking Using KSP

Method

Experiments

Even better...

Even better...

- Track the Invisible!
 - Track the basketball when it is possessed by players

Even better...

- Track the Invisible!
 - Track the basketball when it is possessed by players
- Prior knowledge to improve tracking
 - At most one basketball ball in the match

Problem

Method

Experiments

Problem

Method

Experiments

 $\rho_{k_0}^t = P(X_{k_0}^t = 1 \mid \mathbf{I}^t)$

 $\beta_{k_0}^t = P(Y_{k_0}^t = 1 \mid \mathbf{I}^t)$

 $\beta_{k_n}^t = P(Y_{k_n}^t = 1 \mid \mathbf{I}^t)$

Conclusion

Problem

Method

Experiments

$$(\mathbf{x}, \mathbf{y})^* = \underset{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}}{\operatorname{argmax}} P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y} \mid \mathbf{I}) = \dots$$
$$= \underset{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}}{\operatorname{argmax}} \sum_{t, k} \log\left(\frac{\rho_k^t}{1 - \rho_k^t}\right) x_k^t + \log\left(\frac{\beta_k^t}{1 - \beta_k^t}\right) y_k^t$$

Problem

Method

Experiments

$$\begin{aligned} \mathbf{x}, \mathbf{y} \end{pmatrix}^* &= \operatorname*{argmax}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}} P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y} \mid \mathbf{I}) = \dots \\ &= \operatorname*{argmax}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}} \sum_{t, k} \log\left(\frac{\rho_k^t}{1 - \rho_k^t}\right) x_k^t + \log\left(\frac{\beta_k^t}{1 - \beta_k^t}\right) y_k^t \\ & \underbrace{\text{Linear combination of } x \text{ and } \mathbf{y}} \end{aligned}$$

Problem

Method

Experiments

$$(\mathbf{x}, \mathbf{y})^* = \operatorname{argmax}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}} \sum_{t, k} \log\left(\frac{\rho_k^t}{1 - \rho_k^t}\right) x_k^t + \log\left(\frac{\beta_k^t}{1 - \beta_k^t}\right) y_k^t$$

Problem

$$(\mathbf{x}, \mathbf{y})^* = \operatorname{argmax}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}} \sum_{t, k} \log\left(\frac{\rho_k^t}{1 - \rho_k^t}\right) x_k^t + \log\left(\frac{\beta_k^t}{1 - \beta_k^t}\right) y_k^t$$

Conclusion

Experiments

Method

Motivation

$$(\mathbf{x}, \mathbf{y})^* = \operatorname{argmax}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}} \sum_{t, k} \log\left(\frac{\rho_k^t}{1 - \rho_k^t}\right) x_k^t + \log\left(\frac{\beta_k^t}{1 - \beta_k^t}\right) y_k^t$$

Problem

Motivation

Method

Experiments

$$(\mathbf{x}, \mathbf{y})^* = \operatorname{argmax}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}} \sum_{t, k} \log\left(\frac{\rho_k^t}{1 - \rho_k^t}\right) x_k^t + \log\left(\frac{\beta_k^t}{1 - \beta_k^t}\right) y_k^t$$

$$(\mathbf{x}, \mathbf{y})^* = \operatorname{argmax}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}} \sum_{t, k} \log\left(\frac{\rho_k^t}{1 - \rho_k^t}\right) x_k^t + \log\left(\frac{\beta_k^t}{1 - \beta_k^t}\right) y_k^t$$

$$(\mathbf{x}, \mathbf{y})^* = \operatorname{argmax}_{(\mathbf{x}, \mathbf{y}) \in \mathcal{F}} \sum_{t, k} \log\left(\frac{\rho_k^t}{1 - \rho_k^t}\right) x_k^t + \log\left(\frac{\beta_k^t}{1 - \beta_k^t}\right) y_k^t$$

- Flow Conservation on Container Objects
- Spatial Exclusion on the ground
- Consistency of Interacting Flows
- ✓ □ Tracking the Invisible
- Additional Bound Constraint

Flow Conservation on Container Objects Container Objects don't disappear

Flow Conservation on Container Objects Spatial Exclusion on the ground Objects don't overlap in the 3D space

X

- Flow Conservation on Container Objects
 Spatial Exclusion on the ground
- Consistency of Interacting Flows
 - Models the interaction between objects

Consistency of Interacting Flows

If a person disappears, he

Problem

Method

Experiments

Consistency of Interacting Flows

If a person appears, i-1 k-1 j-1i k-1 j-1i k j j+1

Problem

Method

Experiments

Consistency of Interacting Flows

- Flow Conservation on Container Objects
- Spatial Exclusion on the ground
- Consistency of Interacting Flows
- Tracking the Invisible
 - Track the invisible containee objects

Tracking the Invisible – Counter Flow Variable

Experiments

Tracking the Invisible – Counter Flow Variable

The person is in the car after he enters it.

Problem

Experiments

Tracking the Invisible – Counter Flow Variable

The person was in the car before he

Problem

Experiments

Tracking the Invisible – Counter Flow Variable

The person is in the car after he enters it.

The person was in the car before he

 $\sum_{\substack{k:l=l(k)\\j\in\mathcal{N}(k)}} h_{kj}^{t} = \sum_{\substack{k:l=l(k),\\i:k\in\mathcal{N}(i)}} h_{ik}^{t-1} + \sum_{\substack{k:l=l(k),\\i:k\in\mathcal{N}(i)}} f_{ik}^{t-1} - \sum_{\substack{k:l=l(k)\\j\in\mathcal{N}(k)}} f_{kj}^{t}, \ \forall t, l$ Problem Motivation Method Experiments Conclusion

Tracking the Invisible – Counter Flow Variable

The person is in the car after he enters it.

The person was in the car before he

Tracking the Invisible – Counter Flow Variable

The person is in the car after he enters it.

The person was in the car before he

- Flow Conservation on Container Objects
- Spatial Exclusion on the ground
- Consistency of Interacting Flows
- Tracking the Invisible
- Additional Bound Constraint

Additional Bound Constraint A Car carries limited number of people: $h_{kj}^t \le c * g_{kj}^t, \ \forall t, k, j$

Problem

Method

Experiments

Additional Bound Constraint

Motivation

- A Car carries limited number of people
- At most one basketball in the match:

 $\sum_{\substack{v_k^t \in V(t), \\ j \in \mathcal{N}(k)}} \frac{h_{kj}^t}{h_{kj}^t} + \sum_{\substack{v_k^t \in V(t), \\ j \in \mathcal{N}(k)}} f_{kj}^t \leq 1 , \ \forall t$

Method

Conclusion

Experiments

Additional Bound Constraint

Motivation

- A Car carries limited number of people
 At most one basketball in the match
- A moving car has at least one driver: $h_{kj}^t \ge g_{kj}^t, \ \forall t, k, j : j \in \mathcal{N}(k), l(k) \neq l(j)$

Mixed Integer Programming

Objective:

$$\underset{(\mathbf{f},\mathbf{g})\in\mathcal{F}}{\operatorname{argmax}} \sum_{t} \sum_{j\in\mathcal{N}(k)} \sum_{k} \log\left(\frac{\rho_{k}^{t}}{1-\rho_{k}^{t}}\right) f_{kj}^{t} + \log\left(\frac{\beta_{k}^{t}}{1-\beta_{k}^{t}}\right) g_{kj}^{t}$$

Subject to

Flow Conservation on Container Objects

Method

Experiments

Conclusion

- Spatial Exclusion on the ground
- Consistency of Interacting Flows
- Tracking the Invisible
- Additional Bound Constraint

Solved using Gurobi

Motivation

□ 6 baselines, 3 scenario, 15K+ frames

Problem

Method

Experiments

6 baselines, 3 scenario, 15K+ frames

KSP-fixed KSP-free

--- OURS-LP

- OURS-MIP

6 baselines, 3 scenario, 15K+ frames

anywhere

SSP: Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects, H. Pirsiavash, D. Ramanan, C. Fowlkes. CVPR 2011

KSP: Multiple Object Tracking using K-Shortest Paths Optimization, J. Berclaz, F. Fleuret, E. Türetken, P. Fua. T-PAMI 2011

Experiments

6 baselines, 3 scenario, 15K+ frames

Problem

Method

Experiments

Motivation

6 baselines, 3 scenario, 15K+ frames

Method

Experiments

Conclusion

6 baselines, 3 scenario, 15K+ frames

6 baselines, 3 scenario, 15K+ frames

6 baselines, 3 scenario, 15K+ frames

Tracking interacting objects using network flow, achieved by *f* and *g*.

Experime

- Tracking interacting objects using network flow, achieved by *f* and *g*.
- Tracking the invisible, achieved by counter flow variable *h*.

- Tracking interacting objects using network flow, achieved by *f* and *g*.
- Tracking the invisible, achieved by counter flow variable *h*.
- Solve MIP to obtain the global optimum

- Tracking interacting objects using network flow, achieved by *f* and *g*.
- Tracking the invisible, achieved by counter flow variable *h*.
- Solve MIP to obtain the global optimum
- Future Work:
 - More scenarios: tracking crowd of people
 - More classes of objects
 - Re-Identification

Tracking Interacting Objects Optimally Using Integer Programming Xinchao Wang, Engin Türetken, François Fleuret, Pascal Fua

http://cvlab.epfl.ch/TrackInteractObj

