
30Hz Object Detection
with DPM V5

Why speed up DPM?

• Worth doing, because DPM is effective, mature and stable	

• yes, I know that there are more accurate CNN’s - but they keep changing!	

• Fast DPM V5 opens a door for applications	

• on mobile devices	

• with large datasets	

• with previously implausible numbers of templates	

• Constraint: No weird hardware	

• to avoid being locked out of applications

Review

• What needs to be done?	

• Extract HOG features (used to be thought of as fast)	

• Apply templates (used to be thought of as slow)	

!

• So, make “Apply templates” faster	

• by vector quantizing the HOG cells	

• benefit:	

• replacing multiply+add with lookup	

• cost:	

• less accurate template values (not much; doesn’t seem to matter)	

• construct VQ (offline - no issue)	

• find nearest neighbor for HOG

Sadeghi Forsyth NIPS 13

Estimation error from VQ

Number of centers

Number of principal 	

components

Absolute value 	

of error

Most time is going into HOG computation

PASCAL’07 Detection Challenge, Intel Xeon E5-1650 processor, All algorithms using 6 cores

Template workImage feature	

times

Table from Sadeghi Forsyth 13

Desirable Features of any Approach

• Can work with legacy templates	

• No retraining required	

!

• Random access to image	

• otherwise we’re locked out of pruning/cascade strategies	

!

• Can trade accuracy vs. speed	

• so application developers can look for a sweet spot	

• Anytime property	

• so that plausible/tolerable results are returned whenever interrupted

Strategies to speed up

• Accept some loss of numerical precision	

• quantize cells hierarchically	

• Manage Scale carefully	

• More templates, fewer HOG features	

• Prioritize	

• Avoid evaluating templates at all locations	

• By “peeking” and hashing

Hierarchical Quantization

• 8-times faster computation, loss of 0.001 in mAP

Original: NN to 256 centers
Current: NN to 16 centers, then 	

NN again to 16 centers dep. on first

Strategies to speed up

• Accept some loss of numerical precision	

• quantize cells hierarchically	

• Manage Scale carefully	

• More templates, fewer HOG features	

• Prioritize	

• Avoid evaluating templates at all locations	

• By “peeking” and hashing

Pyramid of Templates

Strategies to speed up

• Accept some loss of numerical precision	

• quantize cells hierarchically	

• Manage Scale carefully	

• More templates, fewer HOG features	

• Prioritize	

• Avoid evaluating templates at all locations	

• By “peeking” and hashing

“Peeking” to speed up template evaluation

Object Proposal

Any-time Property

• Prioritize tasks	

• Halt when time is up

Right now, this block is split in half, 	

but this might not be optimal?

Speed up vs Accuracy

Algorithm mAP Time   Authors
Original DPM 0.33 13.3 Felzenszwalb et al. ‘10
DPM Cascade 0.331 1.7 Felzenszwalb et al. ‘10
FFLD 0.323 1.8 Dubout and Fleuret ‘12
Sparse Kernel 0.277 7 Vedaldi and Zisserman ‘12
WTA 0.24 26 Felzenszwalb et al.
FTVQ 0.331 0.53 Sadeghi, Forsyth ‘13
Ours 0.261 0.03 Sadeghi, Forsyth ‘14

Time = time to complete the detection of 	

all 20 categories starting at raw image

PASCAL’07 Object detection	

Intel Xeon E5-1650 Processor (6-cores)

Typical PR curves

Results

30Hz100Hz 15Hz

Time = time to complete the detection of 	

all 20 categories starting at raw image

AP against time

Desirable Features of any Approach

• Can work with legacy templates	

• No retraining required	

!

• Random access to image	

• otherwise we’re locked out of pruning/cascade strategies	

!

• Can trade accuracy vs. speed	

• so application developers can look for a sweet spot	

• Anytime property	

• so that plausible/tolerable results are returned whenever interrupted

Year Algorithm mAP
Time
(s)

Legacy
Templates

Random
Access

Trade
Accuracy vs

Speed

Anytime
Property

2006 Original DPM 0.33 13.3 Yes No No No

2010 DPM Cascade 0.331 1.7 Yes Yes Yes No

2012 FFLD 0.323 1.8 Yes Impossible Impossible Impossible

2012 Sparse Kernel 0.277 7 Impossible No No No

2013 WTA 0.24 26 Yes Yes Yes No

2013 FTVQ 0.331 0.53 Yes Yes Yes No

2014 Ours 0.261 0.03 Yes Yes Yes Yes

Desirable Features

Future Work

• More systematic resource allocation	

• Autotune:	

• hashing	

• priority values	

• internal parameters	

• to get best behavior for fixed set of templates	

!

• Lazy HOG evaluation	

• Apply similar speedups to Conv-net	

!
!

• What should we do with many templates?

Something funny going on here!

Final comments

• It’s fast, for quite simple reasons	

• Code URL on poster	

!

• All fast codes should:	

• admit legacy templates	

• allow random access	

• allow speed/accuracy tradeoffs	

• be anytime	

!

• As well as fast detection, our code is likely good for:	

• proposal algorithms	

• high precision regimes	

• Mobile-applications

