## Bayesian Nonparametric Intrinsic Image Decomposition

## MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY




Shading Reflectance

## Previous Approaches

- Single Image
- [Barron \& Malik CVPR'11, CVPR'12, ECCV'12]
- [Barrow \& Tenenbaum CVS'78]
- [Bell \& Freeman ICCV'01]
- [Gehler et al. NIPS'11]
- [Grosse et al. ICCV'09]
- [Land and McCann JOSA'71]
- [Shen et al. CVPR'08, CVPR'11]
- [Tappen et al. TPAMI'05, CVPR’06, CVPR‘07]
- [Zhao et al. TPAMI 2012]
- Multiple Image
- [Weiss ICCV'01]
- Object Specific
- [Li et al. ECCV '14]
- Different Media
- [Jeon et al. ECCV'14]
- [Kong et al. ECCV'14]
- Many more...


## Previous Approach: SIRFS

## Models 3D shape, normals, and lighting


(a) Input Image

(b) Modified shape

(c) Modified reflectance

(d) Modified light

(e) Modified orientation

## Is 3D necessary?

## Previous Approach: Retinex

1. Image gradients should match reflectance gradients at edges


## Previous Approach: Retinex

1. Image gradients should match reflectance gradients at edges


## Previous Approach: Retinex

1. Image gradients should match reflectance gradients at edges


## Previous Approach: Retinex

1. Image gradients should match reflectance gradients at edges


## Previous Approach: Retinex

1. Image gradients should match reflectance gradients at edges
2. Shading should be smooth


## Previous Approach: Retinex

1. Image gradients should match reflectance gradients at edges
2. Shading should be smooth


## Advancement: Reflectance Sparsity

1. Image gradients should match reflectance gradients at edges
2. Shading should be smooth
3. Reflectance should be sparse

- [Barron \& Malik CVPR'11, CVPR'12, ECCV'12]
- [Gehler et al. NIPS'11]
- [Shen et al. CVPR' 08], [Shen \& Yeo CVPR'11]
- [Zhao et al. TPAMI'12]



## Previous Approach: Gehler et al. NIPS'11

1. Image gradients should match reflectance gradients at edges
2. Shading should be smooth
3. Reflectance values come from a sparse set of colors

Is gradient matching necessary?


## Previous Approach: Gehler et al. NIPS'11

1. K-Means clustering
2. Find cluster means
3. Optimize for shading (4-connected GMRF)
4. Repeat until convergence Smoothness assumption?

## Bayesian Nonparametrics



Observation





## Our Idea

Gaussian process shading image
$+$
Dirichlet process Gaussian Mixture Model reflectance image
(log) Shading

## (log) Reflectance

\section*{| y |
| :--- |
| + |}



II

## Observation



$$
g \sim \mathrm{GP}(0, \underset{\text { Covariance kernel }}{\kappa} \rightarrow \text { Controls smoothness }
$$



Smoothness vs. $\kappa$



Gaussian Process


$$
g \sim \operatorname{GP}(0, \kappa)
$$


$\longleftarrow$ Smoothness vs. $\boldsymbol{\kappa}$



$$
=
$$

## (log



Dirichlet Process Gaussian Mixture Model (DPGMM)



Reflectance


Observation

$$
x_{i} \sim \mathcal{N}\left(x_{i} ; g+\underset{\substack{\mathrm{GP} \\ \mathrm{DPGMM}}}{\mu_{z_{i}}} ; \Sigma\right)
$$

$x_{i} \sim \mathcal{N}\left(x_{i} ; g+\mu_{z_{i}} ; \Sigma\right)$

$$
\begin{aligned}
& x_{i} \sim \mathcal{N}\left(x_{i} ; g \rightleftarrows \mu_{z_{i}} ; \Sigma\right)
\end{aligned}
$$

Iterative Inference: $\{g \mid 3 \mu, z, x$ GP Regression (used by (Gehler et al. 2011]) $\{\mu, z \mid g+3 C$ DPGMM


$$
x_{i} \sim \mathcal{N}\left(x_{i} ; \stackrel{-3}{g \rightleftarrows+3} \mu_{z_{i}} ; \Sigma\right)
$$

Iterative Inference: $\{g \mid \mu, z, x$ GP Regression (used by [Gehler et al. 2011]) $\{\mu, z \mid g, X$ DPGMM


$$
\begin{aligned}
& x_{i} \sim \mathcal{N}\left(x_{i} ; g+\mu_{z_{i}} ; \sum\right) \\
& \text { Unknowns: } g, \mu, z \begin{array}{c}
g-\text { Gp Shading Image } \\
\mu-\text { Refifictanc colors } \\
z-\text { Cluster assignent } \\
x-\text { observed image }
\end{array}
\end{aligned}
$$

Iterative Inferemce: $\int g \mid \mu, y, x$ GP Regression (used by [Gehler et al 2nisi]) $\mu, \boldsymbol{Z} \mid \hat{\boldsymbol{y}}, \boldsymbol{x} \quad$ DPGMM
Marginalized MCMC: 1. Marginalize $g$, $\mu$, infer $z \mid x$ 2. Large split/merge moves


## Improved Results



## Improved Results



## Improved Results



## Improved Results



## Failure Cases



## Failure Cases



## Failure Cases



## Results








## Summary

- Bayesian nonparametric extension of [Gehler et al. '11]
- No 3D modeling or Retinex gradient terms
- On par with state-of-the-art performance


Code will be available at: http://people.csail.mit.edu/ichang7/


