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Path Based Clustering

Grouping/Segmentation Principles
Connectedness criterion

Single Linkage

Compactness criterion
K-Means Clustering

Pairwise Clustering, Average 

Association

Max-Cut, Average Cut

Normalized Cut
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Overview of this Talk

My view on clustering?

The stability approach to cluster validation and 
an analogy to source channel coding.

Empirical Risk Approximation and its 
connection to annealing
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What is Data Clustering?

Given are measurements/data              to 
characterize objects 
Clusterings partition objects into groups, i.e., 

Clustering quality: cost function

c : O→ {1, . . . , k}
o 7→ c(o) ∈ C hypothesis class

R : X × C → R+
(c,X) 7→ R(c,X) =

P
o∈ORo(c,X)

o ∈ O.
X ∈ X
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Example: k-means clustering

Cost per object:

Optimal clustering solution

Hypothesis class
Vector quantization

Mixture models

CVQ = {c(o) : c(o) =
argmin

α
kx(o) − yαk}

CMM = {c :
all partitions of O}

dimVC(CMM) =∞

Ro(c,X) = kx(o) − yc(o)k2
yα : centroids

copt(o) =

argmin
c∈C

EX{kx(o) − yc(o)k2}

s.t. yα : centroids for copt(o)
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The Validation Problem in Clustering 

Modelling problem: Does 

the cluster model describe 

the data? Selection of the 

costs/hypothesis class!

Model order selection 
problem: Is the number of 

clusters and/or features 

correct?
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Overfitting in Clustering

Requirement: Structures in two different data sets of 
the same data source should have approximately  the 
same quality (costs)!
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Two Instance Scenario
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Information Theoretic Idea to Control 
Approximation

Use data partition as a k-ary code

Communication is achieved via instances
since test instances are perceived as perturbed 
training instances

Determine how well a partition can be 
approximated when you see a test instance. 

Space filling argument yields 

k^(entropy of partition type) / Card(approx. set)
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Size of the Approximation Set?

Optimality condition:
Too small => intersection empty 
or nearly empty
=> the training solution has little to do with the test 
solution => overfitting
Too large => approximation is not precise enough

Randomly sample from   and from            . 
“Optimal” Precision: Find the smallest γ for 
which both sets are maximally overlapping.

|C(1)γ ∩ C(2)γ | ¿ max{C(1)γ , C(2)γ }
ϕ
¡
C(1)γ

¢
∩ C(2)γ = ∅

ϕ(C(2)γ )C(2)γ
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Stochastic Approximation

Learning procedure: sample typical solutions 
from an approximation set

Generalization performance:

ϕ(c) maps solutions from the training instance X(1) to solutions of the 
test instance X(2) by prediction.

cγ ∈ C(1)γ =
©
c : R(c,X(1)) ≤ minc̃R(c̃,X(1)) + γ

ª
c⊥ := argmincR

¡
c,X(2)

¢
EX(2)

©
R
¡
ϕ(cγ),X

(2)
¢
− R

¡
c⊥,X(2)

¢ª
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Vapnik-Chervonenkis Inequality

Bounding test performance of training solution

Take expectations w.r.t. test data X(2)

R
³
ϕ(cγ),X

(2)
´
− R

³
c⊥,X(2)

´
≤

R
³
ϕ(cγ),X

(2)
´
−R

³
cγ,X

(1)
´
+

R
³
ϕ−1(c⊥),X(1)

´
−R

³
c⊥,X(2)

´
+ γ
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Bound on Expected Performance

Vapnik-Chervonenkis inequality

Take expectations w.r.t. test data X(2)

c⊥ := argmincR
¡
c,X(2)

¢

EX(2)

n
R
³
ϕ(cγ),X

(2)
´
− R

³
c⊥,X(2)

´o
≤ γ +

2max
n
ER

³
ϕ(cγ),X

(2)
´
−R

³
cγ,X

(1)
´
,

ER
³
ϕ−1(c⊥),X(1)

´
− ER

³
c⊥,X(2)

´o
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Probability of Large Deviation

Estimate probability of large deviations 

1st term can be bounded in simple cases by Hoeffding or
Bernstein inequality since c does not depend on training data.

2nd term requires uniform convergence since cγ is data dependent.

P
n
ER(2) (ϕ(cγ)) − ER(2)

¡
c⊥
¢
> ²+ γ

o
≤

P
n¯̄̄
ER(1)

¡
ϕ−1(c⊥)

¢
− ER(2)

¡
c⊥
¢¯̄̄
>
²

2

o
+

P
n¯̄̄
R(1) (cγ)− ER(2) (ϕ(cγ))

¯̄̄
>
²

2

o
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Union Bound / Uniform Convergence

Estimate probability of large deviations

Bound on expected risk

P
n¯̄
ER(1)

¡
ϕ−1(c⊥)

¢
− ER(2)

¡
c⊥
¢¯̄
| > ²

2

o
. 2 exp(−λn²2)

P
n¯̄
R(1) (cγ)− ER(2) (ϕ(cγ))

¯̄
>
²

2

o
. 2

|C|
|Cγ|

exp(−λn²2)

ER(2) (ϕ(cγ)) . Emin
c∈C

R(2)(c) + γ + c
q
log(1 + |C|

Cγ ) + log
2
δ
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Relation to Gibbs Sampling

Relation to statistical mechanics of learning: 
determine γ for minimum of bound ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 0

γd
d bound

Gibbs Sampling with temperature T>T stop

d entropy

d energy
=

d log |Cγ|
dγ

= T−1 ⇒

1

T stop
u c

s
log(1 +

|C|
|Cγ|

) + log 2δ



17Wednesday, 18 July 2007 Joachim M. Buhmann, Department of Computer Science, ETH Zurich

Experiment:
Data are drawn from a 
model with k=5 groups.

Inference algorithm
assumes k max =10 groups.

Important: we do not
infer more than 5 
groups!

Infered parameters are
similar to the true
parameter values.

Estimate of Stopping Temperature
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Scales in Data Analysis and Vision

fine

coarse

Coarsening of
Variable Space

Increment Level of
Resolution Pyramid

Coarsening of
Optimization Criterion

Increase Regularization

Coarsening of
Model Order

Reduce # of Segments
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Conclusion & Open Issues

Stability provides a convincing framework to 
adjust model complexity!

What are the components of a theory which 
optimally trades stability against informativity?

Empirical Risk Approximation requires a 
thorough Information Theory basis!

What can we learn from clustering for other 
combinatorial optimization problems? 




