

Cluster Stability and Robust Optimization - An Idea

Joachim M. Buhmann

Institute for Computational Science, ETH Zurich

Grouping/Segmentation Principles

Compactness criterion

- K-Means Clustering
- Pairwise Clustering, Average Association
- Max-Cut, Average Cut
- Normalized Cut

Connectedness criterion

- Single Linkage
- Path Based Clustering

Overview of this Talk

- **My view** on clustering?
- The stability approach to cluster validation and an analogy to source channel coding.
- Empirical Risk Approximation and its connection to annealing

No Rolling and

What is Data Clustering?

- Given are measurements/data X ∈ X to characterize objects o ∈ O.
- Clusterings partition objects into groups, i.e.,

$$c : \mathcal{O} \to \{1, \dots, k\}$$

 $o \mapsto c(o) \in \mathcal{C}$ hypothesis class

Clustering quality: cost function

$$\begin{array}{rcl} R & : & \mathcal{X} \times \mathcal{C} & \to \mathbb{R}_+ \\ & & (c, \mathbf{X}) \mapsto R(c, \mathbf{X}) = \sum_{o \in \mathcal{O}} R_o(c, \mathbf{X}) \end{array}$$

Example: k-means clustering

Cost per object:

 $R_o(c, \mathbf{X}) = \|x(o) - y_{c(o)}\|^2$ $y_\alpha : \text{centroids}$

- Optimal clustering solution
 - $c^{\text{opt}}(o) =$ $\arg\min_{c \in \mathcal{C}} \mathbb{E}_{\mathbf{X}} \{ \| x(o) - y_{c(o)} \|^2 \}$ s.t. y_{α} : centroids for $c^{\text{opt}}(o)$

- Hypothesis class
 - Vector quantization

$$\mathcal{C}^{\mathrm{VQ}} = \{c(o) : c(o) = \arg\min_{\alpha} \|x(o) - y_{\alpha}\|\}$$

Mixture models

 $\mathcal{C}^{\mathrm{MM}} = \{c: \\ \text{all partitions of } \mathcal{O}\}$

 $\dim_{\mathcal{VC}}(\mathcal{C}^{\mathrm{MM}}) = \infty$

The Validation Problem in Clustering

- Modelling problem: Does the cluster model describe the data? Selection of the costs/hypothesis class!
- Model order selection problem: Is the number of clusters and/or features correct?

Requirement: Structures in two different data sets of the same data source should have approximately the same quality (costs)!

Two Instance Scenario

Wednesday, 18 July 2007

Information Theoretic Idea to Control Approximation

- Use data partition as a k-ary code
- Communication is achieved via instances since test instances are perceived as perturbed training instances
- Determine how well a partition can be approximated when you see a test instance.
- Space filling argument yields

k^(entropy of partition type) / Card(approx. set)

No Rolling and

Size of the Approximation Set?

- Optimality condition:
 - Too small => intersection empty $\varphi(\mathcal{C}_{\gamma}^{(1)}) \cap \mathcal{C}_{\gamma}^{(2)} = \emptyset$ or nearly empty $|\mathcal{C}_{\gamma}^{(1)} \cap \mathcal{C}_{\gamma}^{(2)}| \ll \max\{\mathcal{C}_{\gamma}^{(1)}, \mathcal{C}_{\gamma}^{(2)}\}$ => the training solution has little to do with the test solution => overfitting
 - Too large => approximation is not precise enough
- Randomly sample from $C_{\gamma}^{(2)}$ and from $\varphi(C_{\gamma}^{(2)})$. **"Optimal" Precision**: Find the smallest γ for which both sets are maximally overlapping.

Stochastic Approximation

Learning procedure: sample typical solutions from an approximation set $c_{\gamma} \in C_{\gamma}^{(1)} = \left\{ c : R(c, \mathbf{X}^{(1)}) \leq \min_{\tilde{c}} R(\tilde{c}, \mathbf{X}^{(1)}) + \gamma \right\}$ Generalization performance: $c^{\perp} := \arg \min_{c} R(c, \mathbf{X}^{(2)})$

$$\mathbb{E}_{\mathbf{X}^{(2)}}\left\{R\left(\varphi(c_{\gamma}), \mathbf{X}^{(2)}\right) - R\left(c^{\perp}, \mathbf{X}^{(2)}\right)\right\}$$

 $\varphi(c)$ maps solutions from the training instance X⁽¹⁾ to solutions of the test instance X⁽²⁾ by prediction.

Vapnik-Chervonenkis Inequality

Bounding test performance of training solution $R\left(\varphi(c_{\gamma}), \mathbf{X}^{(2)}\right) - R\left(c^{\perp}, \mathbf{X}^{(2)}\right) \leq R\left(\varphi(c_{\gamma}), \mathbf{X}^{(2)}\right) - R\left(c_{\gamma}, \mathbf{X}^{(1)}\right) + R\left(\varphi^{-1}(c^{\perp}), \mathbf{X}^{(1)}\right) - R\left(c^{\perp}, \mathbf{X}^{(2)}\right) + \gamma$

Take expectations w.r.t. test data $X^{(2)}$

Bound on Expected Performance

Vapnik-Chervonenkis inequality $c^{\perp} := \arg \min_{c} R(c, \mathbf{X}^{(2)})$

$$\begin{split} E_{\mathbf{X}^{(2)}} \left\{ R\left(\varphi(c_{\gamma}), \mathbf{X}^{(2)}\right) \ - \ R\left(c^{\perp}, \mathbf{X}^{(2)}\right) \right\} &\leq \gamma + \\ 2\max\left\{ \mathbb{E}R\left(\varphi(c_{\gamma}), \mathbf{X}^{(2)}\right) - R\left(c_{\gamma}, \mathbf{X}^{(1)}\right), \\ \mathbb{E}R\left(\varphi^{-1}(c^{\perp}), \mathbf{X}^{(1)}\right) - \mathbb{E}R\left(c^{\perp}, \mathbf{X}^{(2)}\right) \right\} \end{split}$$

Take expectations w.r.t. test data $X^{(2)}$

UNRAHARING.

Probability of Large Deviation

Estimate probability of large deviations $\mathbb{P}\left\{\mathbb{E}\mathcal{R}^{(2)}\left(\varphi(c_{\gamma})\right) - \mathbb{E}\mathcal{R}^{(2)}\left(c^{\perp}\right) > \epsilon + \gamma\right\} \leq \\
\mathbb{P}\left\{\left|\mathbb{E}\mathcal{R}^{(1)}\left(\varphi^{-1}(c^{\perp})\right) - \mathbb{E}\mathcal{R}^{(2)}\left(c^{\perp}\right)\right| > \frac{\epsilon}{2}\right\} + \\
\mathbb{P}\left\{\left|\mathcal{R}^{(1)}\left(c_{\gamma}\right) - \mathbb{E}\mathcal{R}^{(2)}\left(\varphi(c_{\gamma})\right)\right| > \frac{\epsilon}{2}\right\}$

 1^{st} term can be bounded in simple cases by Hoeffding or Bernstein inequality since c^{*} does not depend on training data.

 2^{nd} term requires uniform convergence since c_{γ} is data dependent.

Union Bound / Uniform Convergence

Estimate probability of large deviations

$$\mathbb{P}\left\{ \left| \mathbb{E}\mathcal{R}^{(1)}\left(\varphi^{-1}(c^{\perp})\right) - \mathbb{E}\mathcal{R}^{(2)}\left(c^{\perp}\right) \right| \left| > \frac{\epsilon}{2} \right\} \lesssim 2\exp(-\lambda n\epsilon^{2}) \\ \mathbb{P}\left\{ \left| \mathcal{R}^{(1)}\left(c_{\gamma}\right) - \mathbb{E}\mathcal{R}^{(2)}\left(\varphi(c_{\gamma})\right) \right| > \frac{\epsilon}{2} \right\} \lesssim 2\frac{|\mathcal{C}|}{|\mathcal{C}_{\gamma}|}\exp(-\lambda n\epsilon^{2})$$

Bound on expected risk

$$\mathbb{E}\mathcal{R}^{(2)}\left(\varphi(c_{\gamma})\right) \lesssim \mathbb{E}\min_{c \in \mathcal{C}} \mathcal{R}^{(2)}(c) + \gamma + c\sqrt{\log(1 + \frac{|\mathcal{C}|}{\mathcal{C}_{\gamma}}) + \log\frac{2}{\delta}}$$

NANA BANANA

d

Relation to Gibbs Sampling

Relation to statistical mechanics of learning: $\left(\frac{d \text{ bound}}{d\gamma} = 0\right)$ determine γ for minimum of bound

$$\frac{d \operatorname{entropy}}{d \operatorname{energy}} = \frac{d \log |\mathcal{C}_{\gamma}|}{d\gamma} = T^{-1} \quad \Rightarrow$$
$$\frac{1}{T^{\operatorname{stop}}} \approx c \sqrt{\log(1 + \frac{|\mathcal{C}|}{|\mathcal{C}_{\gamma}|}) + \log \frac{2}{\delta}}$$

Gibbs Sampling with temperature $T > T^{stop}$

Wednesday, 18 July 2007

No RATERIAN

Estimate of Stopping Temperature

Scales in Data Analysis and Vision

Coarsening of

fine

Increment Level of **Resolution Pyramid**

Coarsening of **Optimization Criterion**

Increase Regularization

Coarsening of Model Order

Reduce # of Segments

Conclusion & Open Issues

- Stability provides a convincing framework to adjust model complexity!
- What are the components of a theory which optimally trades stability against informativity?
- Empirical Risk Approximation requires a thorough Information Theory basis!
- What can we learn from clustering for other combinatorial optimization problems?