Linking people in videos with "their" names using coreference resolution

Vignesh Ramanathan, Armand Joulin, Percy Liang, Li Fei-Fei

Computer Science Department Stanford Vision Lab

Video Data

Video Data

+ Text Data

Video Data

Video Data

+ Text Data

Video Data

+ Text Data

Video Data
 + Text Data

Everingham et al. 2006
Sivic et al. 2009
Cour et al. 2009
Tapaswi et al. 2012

TV Script

Names
Actions
Babaguchi et al. 2002 Xu et al. 2008

Interactions
Events

Text to Video

Unidirectional Models: Text to Video

Everingham et al. 2006
Sivic et al. 2009
Cour et al. 2009
Tapaswi et al. 2012
Bojanowski et al. '13

Unidirectional Models: Text to Video

Everingham et al. 2006
Sivic et al. 2009
Cour et al. 2009
Tapaswi et al. 2012
Bojanowski et al. '13

Use Limited Information
Only proper nouns

Unidirectional Models: Text to Video

Everingham et al. 2006
Sivic et al. 2009
Cour et al. 2009
Tapaswi et al. 2012
Bojanowski et al. '13

Use Limited Information
Only proper nouns
Treat Videos and Script as bag of tracks and names

Unidirectional Models: Text to Video

Unidirectional Models
Only proper nouns

Treat Videos and Script as
bag of tracks and names

Temporal ordering of people

Temporal ordering of people

People appear in the same order in both text and videos

Temporal ordering of people

Coreference Resolution in NLP

To use the alignment we need to identify the name of pronouns

Coreference Resolution in NLP

To use the alignment we need to identify the name of pronouns

Coreference Resolution in NLP

Roland arrives as Ian waits. He stands with Mary She turns

Coreference Resolution in NLP

Coreference Resolution in NLP

Coreference Resolution in NLP

Roland arrives as Ian waits. He stands with Mary. She turns

A challenging NLP task
Coreference Resolution

Coreference Resolution in NLP

Roland arrives as Ian waits. He stands with Mary. She turns

A challenging NLP task
Coreference Resolution

Coreference Resolution in NLP

Coreference Resolution in NLP

Coreference Resolution in NLP

Bidirectional model

Linking people with coreference resolution

Everingham et al. 2006
Sivic et al. 2009
Cour et al. 2009
Tapaswi et al. 2012
Bojanowski et al. '13
Our Bidirectional Model

Unidirectional Models
Only proper nouns
Treat Videos and Script as bag of tracks and names

Linking people with "their" names

-Problem setup

- Our Bidirectional model

- Experiments
- Summary

Problem Setup (Input)

- Videos with detected human tracks

Problem Setup (Input)

- Videos with detected human tracks
- Descriptive script partially aligned with video segments

time

Problem Setup (Input)

- Videos with detected human tracks
- Descriptive script partially aligned with video segments
- Human mentions (nouns, pronouns) identified in the script.

time

Problem Setup (Input)

- Videos with detected human tracks
- Descriptive script partially aligned with video segments
- Human mentions (nouns, pronouns) identified in the script.
- A list of cast names

Cast List: Roland, Ian, Mary, ...

time

Problem Setup (Output)

$m_{1} \quad m_{2} \quad m_{3} \quad m_{4}$
Roland arrives as lan waits. He stands with Mary ...

Problem Setup (Output)

Name assignment to human tracks

m_{1}
Roland arrives as Ian waits. He stands with Mary ...
m_{5}
The rider moves closer.

Problem Setup (Output)

Name assignment to human tracks

m_{1}
m_{2}
m_{4}
Roland arrives as Ian waits. He stands with Mary ...

m_{4}
The rider moves closer.

Problem Setup (Output)

Name assignment to human tracks

Name assignment to human mentions

Roland arrives as Ian waits. He stands with Mary ...

Linking people with "their" names

- Problem setup
 - Our Bidirectional model

- Experiments

- Summary

Our Bidirectional Model

Minimize joint cost of name assignment to tracks and mentions with alignment

Our Bidirectional Model

Minimize joint cost of name assignment to tracks and mentions with alignment

Tracks
Track name assignment

Names

Our Bidirectional Model

Minimize joint cost of name assignment to tracks and mentions with alignment

Tracks
Track name assignment

Our Bidirectional Model

Minimize joint cost of name assignment to tracks and mentions with alignment

Our Bidirectional Model: Track name assignment

Our Bidirectional Model: Track name assignment

$$
\mathbf{Y} \in\{0,1\}^{T \times P} \text { Name assignment for tracks }
$$

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks
Clustering cost*

$$
\operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)
$$

- Discriminative clustering.
- Tracks with similar features should have same name.

Convex quadratic in \mathbf{Y}

*Bojanowski et al. ICCV'13

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks

$$
\operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{t r a c k} \mathbf{Y}\right)
$$

Convex quadratic in \mathbf{Y}

*Bojanowski et al. ICCV'13

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks

$$
\operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)
$$

Scene constraint

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks

$$
\operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)
$$

Our Bidirectional Model: Track name assignment

$\mathbf{Y} \in\{0,1\}^{T \times P}$ Name assignment for tracks
Clustering cost

$$
\operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)
$$

Convex quadratic in \mathbf{Y}

Scene constraint

Linear constraint

Our Bidirectional Model

$$
\begin{array}{ll}
\text { min } & \operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right) \\
\text { s.t } & \mathbf{Y} \in C_{Y}
\end{array}
$$

Our Bidirectional Model

$$
\begin{array}{ll}
\text { min } & \operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right) \\
\text { s.t } & \mathbf{Y} \in C_{Y}
\end{array}
$$

Roland arrives as lan waits. He stands with Mary
Mention name
assignment \uparrow
Mentions

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

Roland arrives as Ian waits. He stands with Mary ...

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

Mentions independently are not informative!

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

We rely on context to identify the mention-name.

Name of an ambiguous mention depends on an antecedent mention

Roland arrives as Ian waits. He stands with Mary

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable

Roland arrives as Ian waits. He stands with Mary

The rider moves closer.

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable
Every pair of mentions has a text feature vector, which determines antecedence.

Roland arrives as Ian waits. He stands with Mary

The rider moves closer.

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable
Every pair of mentions has a text feature vector, which determines antecedence.

Roland arrives as Ian waits. He stands with Mary

The rider moves closer.

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable
Every pair of mentions has a text feature vector, which determines antecedence.

Roland arrives as Ian waits. He stands with Mary

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable
Every pair of mentions has a text feature vector, which determines antecedence.

Roland arrives as Ian waits. He stands with Mary
The rider moves closer.

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable

Roland arrives as Ian waits. He stands with Mary

The rider moves closer.

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions
$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable

Antecedent clustering cost

$$
\mathbf{R}^{T} \Pi_{m e n} \mathbf{R}
$$

Convex quadratic in \mathbf{R}

- Discriminative clustering
- Mention-pairs with similar features have similar antecedence

Roland arrives as Ian waits. He stands with Mary

The rider moves closer.

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable

$$
\mathbf{R}^{T} \Pi_{\text {men }} \mathbf{R}
$$

R

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions

$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable

$$
\mathbf{R}^{T} \Pi_{\text {men }} \mathbf{R}
$$

R constrains Z

Antecedent mention shares the same name.

Our Bidirectional Model: Mention name assignment

$\mathbf{Z} \in\{0,1\}^{M \times P}$ Name assignment for mentions
$\mathbf{R} \in\{0,1\}^{M^{2}}$ Antecedence variable

Antecedent clustering cost
$\mathbf{R}^{T} \Pi_{\text {men }} \mathbf{R}$
Convex quadratic in \mathbf{R}

R constrains Z
$\left\|\mathbf{Z}_{i}-\mathbf{Z}_{j}\right\|_{\infty} \leq\left(1-\mathbf{R}_{i j}\right)$
Convex constraint

Antecedent mention
shares the same name.

Our Bidirectional Model

$$
\begin{aligned}
& \min \operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)+\mathbf{R}^{T} \Pi_{\text {men }} \mathbf{R} \\
& \text { s.t } \quad \mathbf{Y} \in C_{Y}, \quad \mathbf{Z}, \mathbf{R} \in C_{Z, R}
\end{aligned}
$$

Roland

Our Bidirectional Model

$$
\begin{array}{lll}
\text { min } & \operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)+ & \mathbf{R}^{T} \Pi_{\text {men }} \mathbf{R} \\
\text { s.t } & \mathbf{Y} \in C_{Y}, & \mathbf{Z}, \mathbf{R} \in C_{z, R}
\end{array}
$$

- - 。

Our Bidirectional Model: Alignment

$\mathbf{A} \in\{0,1\}^{T \times M}$ Alignment matrix between tracks and mentions

Our Bidirectional Model: Alignment

$\mathbf{A} \in\{0,1\}^{T \times M}$ Alignment matrix between tracks and mentions

Our Bidirectional Model: Alignment

$\mathbf{A} \in\{0,1\}^{T \times M}$ Alignment matrix between tracks and mentions

Aligned tracks share name

Our Bidirectional Model: Alignment

$\mathbf{A} \in\{0,1\}^{T \times M}$ Alignment matrix between tracks and mentions

Aligned tracks share name

Our Bidirectional Model: Alignment

$\mathbf{A} \in\{0,1\}^{T \times M}$ Alignment matrix between tracks and mentions

Our Bidirectional Model: Alignment

$\mathbf{A} \in\{0,1\}^{T \times M}$ Alignment matrix between tracks and mentions

Alignment cost
Dynamic Time Warping
Dynamic program to optimize in A (enforces monotonic alignment)

Our Bidirectional Model

$$
\begin{array}{lll}
\text { min } & \operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)+\mathbf{R}^{T} \Pi_{\text {men }} \mathbf{R}+\|\mathbf{Y}-\mathbf{A Z}\|_{F}^{2} \\
\text { s.t } & \mathbf{Y} \in C_{Y}, \quad \mathbf{Z}, \mathbf{R} \in C_{Z, R}, & \mathbf{A} \in C_{A}
\end{array}
$$

Optimization

$$
\begin{array}{lll}
\text { min } & \operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)+ & \mathbf{R}^{T} \Pi_{\text {men }} \mathbf{R}+\|\mathbf{Y}-\mathbf{A Z}\|_{F}^{2} \\
\text { s.t } & \mathbf{Y} \in C_{Y}, \quad \mathbf{Z}, \mathbf{R} \in C_{Z, R}, \quad \mathbf{A} \in C_{A}
\end{array}
$$

- Relax $\mathbf{Y}, \mathbf{Z}, \mathbf{R}$ to be in [0,1]
- Use Block Coordinate Descent

Optimization

$$
\begin{aligned}
& \min \\
& \text { s.t }
\end{aligned}\left(\begin{array}{l}
\operatorname{tr}\left(\mathbf{Y}^{T} \Pi_{\text {track }} \mathbf{Y}\right)+ \\
\mathbf{Y} \in C_{Y},
\end{array} \mathbb{R}^{T} \Pi_{\text {men }} \mathbb{R}+\frac{\|\mathbf{Y} \mathbf{- \mathbf { A } Z}\|_{F}^{2}}{\mathbb{R}^{2} \in C_{Z, R}} \frac{\mathbf{A} \in C_{A}}{}\right.
$$

- Relax $\mathbf{Y}, \mathbf{Z}, \mathbf{R}$ to be in [0,1]
- Use Block Coordinate Descent
- Quadratic Program to optimize \mathbf{Y}

Optimization

- Relax $\mathbf{Y}, \mathbf{Z}, \mathbf{R}$ to be in [0,1]
- Use Block Coordinate Descent
- Quadratic Program to optimize \mathbf{Y}
- Quadratic Program to optimize Z,R

Optimization

- Relax Y, Z, R to be in [0,1]
- Use Block Coordinate Descent
- Quadratic Program to optimize \mathbf{Y}
- Quadratic Program to optimize Z,R
- Dynamic Program to optimize in terms of A

Linking people with "their" names

-Problem setup

- Our Bidirectional model
- Experiments
-Summary

Dataset

We reveal Lynette holding Porter by his feet, while he clings to Preston's desk.

Missy points to the larger kid. The big kid walks off. Other kids jeer.

Cary eyes the siblings, as Alicia looks across the bullpen

Dataset

Dataset

We reveal Lynette holding Porter by his feet, while he clings to Preston's desk.

Missy points to the larger kid. The big kid walks off. Other kids jeer.

Cary eyes the siblings, as Alicia looks across the bullpen
pronoun/nominal

Dev. Set (14 episodes)	3329 tracks (3 eps.)	811 mentions

- No training set since we have no labelled examples.
- The model parameters such as regularization constant are tuned on the dev. set.

Dataset

Dataset

We reveal Lynette holding Porter by his feet, while he clings to Preston's desk.

Missy points to the larger kid. The big kid walks off. Other kids jeer.

Cary eyes the siblings, as Alicia looks across the bullpen
pronoun/nominal

Dev. Set (14 episodes)	$\mathbf{3 3 2 9}$ tracks (3 eps.)	$\mathbf{8 1 1}$ mentions
Test Set (5 episodes)	$\mathbf{4 7 5 7}$ tracks	$\mathbf{3 0 0}$ mentions

Tasks:

- Name assignment to tracks;
- Name assignment to mentions;

Dataset

pronoun/nominal

$\mathbf{3 3 2 9}$ tracks (3 eps.)	811 mentions
$\mathbf{4 7 5 7}$ tracks	300 mentions

Tasks:

- Name assignment to tracks;
- Name assignment to mentions;

Experiments: Name Assignment to Tracks

Dataset

Cary eyes the siblings, as Alicia looks across the bullpen
pronoun/nominal
811 mentions
300 mentions

Tasks:

- Name assignment to tracks;
- Name assignment to mentions;

Experiments: Name Assignment to Mentions

Experiments: Name Assignment to Mentions

Experiments: Name Assignment to Mentions

Experiments: Benefit of bidirectional model

Experiments: Benefit of bidirectional model

Gabriel cues the entry of Rowan. Rose doesn't notice him. He takes her in his arms.

Experiments: Benefit of bidirectional model

Experiments: Benefit of bidirectional model

Edouard \& MacLeod unfurl the canvas, searching for the name. He then peers at it. She turns

Experiments: Benefit of bidirectional model

Error Analysis: Name Assignment to Mentions

Error Analysis: Name Assignment to Mentions

Error Analysis: Name Assignment to Mentions

Linking people with "their" names

- Problem setup

- Our Bidirectional model

- Experiments
- Summary

Summary

Bidirectional model to handle challenging problems in Vision and NLP

Temporal ordering based alignment

Cary eyes the siblings, as Alicia looks across the bullpen

Thank You

NGT Matlomal Instilute at Shandarda and Tochmolesy

Google intel

Microsoft ${ }$ Research Mind's Eye OARPA

