Linking people in videos with "their" names using coreference resolution

Vignesh Ramanathan, Armand Joulin, Percy Liang, Li Fei-Fei

Computer Science Department Stanford Vision Lab

Video Data

Video Data + Text Data

Video Data + Text Data

Text to Video

Roland arrives as Ian waits. He stands with Mary. She turns.

Challenging Setting

- No labelled instances
- Script is the only supervision

Everingham et al. 2006 Sivic et al. 2009 Cour et al. 2009 Tapaswi et al. 2012 Bojanowski et al. '13

Roland arrives as Ian waits. He stands with Mary. She turns.

Everingham et al. 2006 Sivic et al. 2009 Cour et al. 2009 Tapaswi et al. 2012 Bojanowski et al. '13

Use Limited Information

Only proper nouns

Video = Bag of tracks

Everingham et al. 2006 Sivic et al. 2009 Cour et al. 2009 Tapaswi et al. 2012 Bojanowski et al. '13

Use Limited Information

Only proper nouns

Treat Videos and Script as bag of tracks and names

Unidirectional Models

Only proper nouns

Treat Videos and Script as bag of tracks and names

Temporal ordering of people

Temporal ordering of people

People appear in the same order in both text and videos

Temporal ordering of people

To use the alignment we need to **identify the name of pronouns**

To use the alignment we need to **identify the name of pronouns**

Coreference Resolution

Coreference Resolution

Bidirectional model

Linking people with coreference resolution

Our Bidirectional Model

Joint coreference resolution to use pronouns and nominals

Treat as **temporal sequences** to align video and text Everingham et al. 2006 Sivic et al. 2009 Cour et al. 2009 Tapaswi et al. 2012 Bojanowski et al. '13

Unidirectional Models

Only proper nouns

Treat Videos and Script as bag of tracks and names

Problem setup

•Our Bidirectional model

- Experiments
- •Summary

• Videos with detected human tracks

• •

• • •

- Videos with detected human tracks
- Descriptive script partially aligned with video segments

- Videos with detected human tracks
- Descriptive script partially aligned with video segments
- Human mentions (nouns, pronouns) identified in the script.

- Videos with detected human tracks
- Descriptive script partially aligned with video segments
- Human mentions (nouns, pronouns) identified in the script.
- A list of cast names

Cast List: Roland, Ian, Mary, ...

• • •

 $\begin{array}{ccc} m_1 & m_2 & m_3 & m_4 \\ \hline \mbox{Roland arrives as lan waits. He stands with Mary ...} \end{array}$

m₅ The rider moves closer.

Name assignment to human tracks

Name assignment to human tracks

 \circ \circ \circ

0 0 0

 m_1 m_2 m_3 m_4 Roland arrives as Ian waits. He stands with Mary ... m₄ The rider moves closer.

Name assignment to human tracks

Name assignment to human mentions

• Problem setup

Our Bidirectional model

- Experiments
- •Summary

Minimize joint cost of name assignment to tracks and mentions with alignment

Minimize joint cost of name assignment to tracks and mentions with alignment

Minimize joint cost of name assignment to tracks and mentions with alignment

...

Minimize joint cost of name assignment to tracks and mentions with alignment

 $\mathbf{Y} \in \{0,1\}^{T \times P}$ Name assignment for tracks

• •

• • •

 $\mathbf{Y} \in \{0,1\}^{T \times P}$ Name assignment for tracks

- •
 - •

• • •

Clustering cost*

 $tr\left(\mathbf{Y}^{T}\Pi_{track}\mathbf{Y}\right)$

Convex quadratic in \mathbf{Y}

*Bojanowski et al. ICCV'13

- Discriminative clustering.
- Tracks with **similar features** should have **same name**.

• • •

Scene (lan,

0 0 0

• • •

$$\min \operatorname{tr} \left(\mathbf{Y}^T \Pi_{track} \mathbf{Y} \right)$$

s.t $\mathbf{Y} \in C_Y$

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

The rider moves closer.

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

Mentions independently are not informative!

The rider moves closer.

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

We rely on context to identify the mention-name.

Name of an ambiguous mention depends on an antecedent mention

 m_2 m_3 Roland arrives as Ian waits. He stands with Mary ...

The rider moves closer.

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

 $\mathbf{R} \in \{0,1\}^{M^2}$ Antecedence variable

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

 $\mathbf{R} \in \{0,1\}^{M^2}$ Antecedence variable

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

 $\mathbf{R} \in \{0,1\}^{M^2}$ Antecedence variable

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

 $\mathbf{R} \in \{0,1\}^{M^2}$ Antecedence variable

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

 $\mathbf{R} \in \{0,1\}^{M^2}$ Antecedence variable

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

 $\mathbf{R} \in \{0,1\}^{M^2}$ Antecedence variable

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

 $\mathbf{R} \in \{0,1\}^{M^2}$ Antecedence variable

$$\mathbf{R}^{T}\Pi_{men}\mathbf{R}$$

Convex quadratic in \mathbf{R}

- Discriminative clustering
- Mention-pairs with similar features have similar antecedence

 $\mathbf{Z} \in \{0,1\}^{M \times P}$ Name assignment for mentions

$$\mathbf{R} \in \{0,1\}^{M^2}$$
 Antecedence variable

Roland arrives as lan waits. He stands with Mary ...

The rider moves closer.

Roland arrives as lan waits. He stands with Mary ...

m₂

The rider moves closer.

$$\min \operatorname{tr} \left(\mathbf{Y}^T \Pi_{track} \mathbf{Y} \right) + \mathbf{R}^T \Pi_{men} \mathbf{R}$$

s.t $\mathbf{Y} \in C_Y$, $\mathbf{Z}, \mathbf{R} \in C_{Z,R}$

Our Bidirectional Model: Alignment

Our Bidirectional Model: Alignment

 $\mathbf{A} \in \{0,1\}^{T \times M}$ Alignment matrix between tracks and mentions

Dynamic Time Warping Dynamic program to optimize in A (enforces monotonic alignment)

Our Bidirectional Model

min $\operatorname{tr}(\mathbf{Y}^T \Pi_{track} \mathbf{Y}) + \mathbf{R}^T \Pi_{men} \mathbf{R} + \|\mathbf{Y} - \mathbf{A}\mathbf{Z}\|_F^2$ s.t $\mathbf{Y} \in C_Y$, $\mathbf{Z}, \mathbf{R} \in C_{Z,R}$, $\mathbf{A} \in C_A$

Relax Y, Z, R to be in [0,1]
Use Block Coordinate Descent

$$\min \left\{ \begin{aligned} \operatorname{tr} \left(\mathbf{Y}^{T} \Pi_{track} \mathbf{Y} \right) + \mathbf{R}^{T} \Pi_{men} \mathbf{R} + \left\| \mathbf{Y} - \mathbf{A} \mathbf{Z} \right\|_{F}^{2} \\ \mathbf{S}.t \quad \mathbf{Y} \in C_{Y} \end{aligned} \right. , \qquad \mathbf{Z}, \mathbf{R} \in C_{Z,R} \quad \mathbf{A} \in C_{A} \end{aligned}$$

- RelaxY,Z,R to be in [0,1]
- Use Block Coordinate Descent
- Quadratic Program to optimize ${\bf Y}$

- Relax $\mathbf{Y}, \mathbf{Z}, \mathbf{R}$ to be in [0,1]
- Use Block Coordinate Descent
- Quadratic Program to optimize Y
- Quadratic Program to optimize **Z**, **R**

 $\begin{array}{ll} \min \ \operatorname{tr} \left(\mathbf{Y}^T \boldsymbol{\Pi}_{track} \mathbf{Y} \right) + \ \mathbf{R}^T \boldsymbol{\Pi}_{men} \mathbf{R} + \\ \mathrm{s.t} \quad \mathbf{Y} \in C_Y \ , \qquad \mathbf{Z}, \mathbf{R} \in C_{Z,R} \ , \qquad \mathbf{A} \in C_A \end{array}$

- Relax $\mathbf{Y}, \mathbf{Z}, \mathbf{R}$ to be in [0,1]
- Use Block Coordinate Descent
- Quadratic Program to optimize Y
- Quadratic Program to optimize Z, R
- Dynamic Program to optimize in terms of A

Problem setup

•Our Bidirectional model

- •Experiments
- •Summary

<u>We</u> reveal <u>Lynette</u> holding <u>Porter</u> by his feet, while <u>he</u> clings to <u>Preston</u>'s desk.

Missy points to the <u>larger kid</u>. The <u>big kid</u> walks off. <u>Other</u> <u>kids</u> jeer.

<u>Cary</u> eyes the <u>siblings</u>, as <u>Alicia</u> looks across the bullpen

Dev. Set (14 episodes) 3329 tracks (3 eps.) 811 mentions

pronoun/nominal

Dev. Set (14 episodes) **3329** tracks (3 eps.) **811** mentions

- No training set since we have no labelled examples.
- The model **parameters** such as regularization constant are tuned on the **dev. set**.

pronoun/nominal

Dev. Set (14 episodes)	3329 tracks (3 eps.)	811 mentions
Test Set (5 episodes)	4757 tracks	300 mentions

pronoun/nominal

Dev. Set (14 episodes)	3329 tracks (3 eps.)	811 mentions
Test Set (5 episodes)	4757 tracks	300 mentions
Tasks:		

- Name assignment to tracks;
- Name assignment to mentions;

pronoun/nominal

Dev. Set (14 episodes)	3329 tracks (3 eps.)	811 mentions
Test Set (5 episodes)	4757 tracks	300 mentions

<u>Tasks:</u>

- Name assignment to tracks;
- Name assignment to mentions;

We reveal Lynette Porter Porter by his feet, while he clings to Preston's desk.	Bryan points to the larger kid. The big kid walks off. Other kids jeer.		Ca A	ary eyes the siblings, as Alicia looks across the bullpen	
pronoun/nominal					
Dev. Set (14 episode			S.)	811 mentions	
Test Set (5 episodes)		4757 tracks 300 mentio		300 mentions	

<u>Tasks:</u>

- Name assignment to tracks;
- Name assignment to mentions;

Experiments: Name Assignment to Mentions

Experiments: Name Assignment to Mentions

Experiments: Name Assignment to Mentions

Edouard & MacLeod unfurl the canvas, searching for the name. <u>He</u> then peers at it. <u>She</u> turns

Error Analysis: Name Assignment to Mentions

Error Analysis: Name Assignment to Mentions

Faces not detected or face not visible!

Error Analysis: Name Assignment to Mentions

Lynette holds Porter by feet, while he clings to the desk.

Long clip with too many people, leads to wrong alignment

• Problem setup

- •Our Bidirectional model
- Experiments
- Summary

Summary

Bidirectional model to handle challenging problems in Vision and NLP

Temporal ordering based alignment

Model evaluated on new TV episode Dataset

Cary eyes the <u>siblings</u>, as <u>Alicia</u> looks across the bullpen

Leonard looks at the robot, while the engineer

Thank You

