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Motivation

• Clustering

• Stream of documents
• On-line approach
• Asynchronous 
• Adaptive to changes in the stream

• New clusters, splits, merges, discard old documents etc.

• Need for paralellization
• Current aim: make good use of the parallel processing abilities of an individual 

computer
• Multithreading, not distributed computing

• Main application: EventRegistry
• Events  Clusters of news articles



Architecture

• NewsCluster web service

• Receives new documents as 
HTTP requests

• Notifies listeners (by making 
HTTP requests) about changes
• Cluster membership
• Cluster splits/merges
• Cluster medians

• Background tasks
• Delete old clusters 

and their documents
• Periodically save state to disk
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Underlying clustering approach

• Main idea: 
• Assign each document to the cluster with the nearest centroid

• We can't do too much reassigning of documents between clusters
• Because it's an on-line setting and we don't have time

• Because the application wants a certain amount of stability in the clusters

• Cluster maintenance consists of
• Occasional splits/merges

• Deleting old clusters



Underlying clustering approach

• In our input stream, there are many duplicates
or near-duplicates
• Basically the same article coming through several sources

• Two documents are duplicates if they
• Have the same title (modulo whitespace) and

• Very similar TF-vectors (L1 distance below a threshold)

• If a new article is found to be a duplicate of an
existing article, it is discarded without further processing

Discard obvious duplicates



Underlying clustering approach

• Document representation
• Bag of words (TF-IDF vector)

• Bag of concepts [if provided by the user]

• Relative weight of each part in the resulting 
feature vector is customizable

• Cosine similarity is used to compare feature vectors

Discard obvious duplicates

Prepare feature vector



Underlying clustering approach

• The document will be assigned to the cluster
whose centroid is the closest to the document
• Compute cosine similarity between the document

and the centroids of all clusters

• If even the closest centroid is far enough,
start a new cluster containing just this document

Discard obvious duplicates

Prepare feature vector

Find nearest centroid



Underlying clustering approach

• Each cluster maintains various statistics that
are updated incrementally when the cluster
changes
• Sum of feature vectors

• Per-feature variances

• Medoid

• The system supports weighting documents with
exponentially time-decaying weights
• But this is currently not used in our application

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Insert document into cluster



Underlying clustering approach

• After every few additions, we consider splitting
the cluster into two subclusters
• The method is based on bisecting k-means
• Project all points onto a line and split them

based on whether they fall left or right of the
projection of the centroid

• In the first pass, the line is simply the principal component,
later it's a line through the centroids from the previous pass

• Accept the split if:
• The Bayesian information criterion is met, and
• The resulting subclusters would not meet our merge criteria

• Split by timestamp:
• If the variance of timestamps is above a threshold
• Split a cluster into an "older" and a "newer" subcluster
• BIC is used to choose the relative size of the subclusters
• Hopefully the older subcluster will be discarded soon

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Insert document into cluster

Consider splitting



Underlying clustering approach

• After every few additions, we consider merging
the cluster with some other cluster
• Candidates for merging are those clusters whose

centroid is the closest to our (in terms of cosine similarity)

• Centroids tend to be dense vectors, so cosine 
computations are slow
• Use "pruned" centroids for an intial filtering step

• Accept the merge if:
• Cosine similarity is above a threshold; or

• Lughofer's ellipsoid overlap criterion

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Insert document into cluster

Consider splitting

Consider merging
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Considerations for paralellization

• Which are the most time-consuming
parts of the process?

• 54%: computing cosines between
the new document and all centroids

• 43%: computing cosines between
one centroid and all other centroids
to find merge candidates

• 3%: everything else



Considerations for paralellization

• Shared data structures:
• Title hash table for

duplicate detection

• Word and DF table
for bag-of-words vectors

• Cluster membership
and statistics

Hash table of titles etc.

Hash table of words
and their DFs

Clusters

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Insert document into cluster

Consider splitting

Consider merging



Downsides of fine-grained paralellization

• Naive idea: assign each document 
to one worker thread
• This thread executes the entire 

clustering algorithm for this 
document

• Downside #1: too much locking

• Downside #2: information 
relevant to the same cluster 
is scattered across multiple 
worker threads

Thread 1

Computes
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between C
and document d1

(for insertion)
or between C
and centroid C'
(for merging)

Thread 2

Inserts d2

into C,
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centroid etc.

Thread 3
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into C1

and C2

Thread 4

Trying to
merge C
with C3

Cluster C



Avoiding cluster-level locking

• If we want to avoid per-cluster locking:
• No thread may modify a cluster

• While some other thread is looping through clusters
(to find the nearest centroid or to find merge candidates)
• But each thread spends 95% its time doing this

• And yet each thread will need to modify a cluster at some point
(to insert the new document into it)
• If it has to wait for all other threads to finish looping through clusters,

that's a lot of waiting

• And it doesn't help much with the problem of having multiple 
threads trying to do different things to the same cluster



Read and write stages

• We can rephrase our 
approach a little to make 
it clearer which steps 
need to modify shared 
data structures

Hash table of titles etc.

Clusters

Check if duplicate
Tokenize document
Prepare TF vector
(except new terms)

Finalize TF-IDF vector
Find nearest centroid

Consider splitting / merging

Hash table of words
and their DFs

Store the title
Update word table, DFs

Insert document into cluster

Perform split / merge

R1

R2

R3

M1

M2

M3



Main vs. Worker threads

• There is no reason why all the steps 
should be done by the same thread
• N worker threads: 

perform read stages

• 1 main thread: performs modify 
stages for all the requests

• Only the main thread modifies
any global data structures

Multi-threaded clustering engine

incoming
document

queue

processed
document

queue

R-stage 
queues

M-stage 
queues

main 
thread

worker
threads



Barrier-based parallelization

• Main thread needs to block all worker threads 
while it updates the shared data structures
• Set a "barrier" flag to stop 

issuing new jobs to worker threads
• Wait for all worker threads to 

finish their current job
• Main thread can now 

modify shared data
• Clear the barrier flag so the 

worker threads can resume

• We have a barrier once per sec
• To reduce the amount of time spent waiting
• This means each requests needs 

3 seconds to be fully processed

Main thread sleeps 1 sec

Set barrier flag; wait for 
workers to finish current jobs

Main thread modifies 
shared data structures,
clears barrier flag

Main thread sleeps 1 sec

Workers 
process 
jobs in 
a loop

Workers sleep, wait 
for end of barrier



Barrier processing in the main thread

• For each request that went through an R-stage since the previous 
barrier, we now have to perform the corresponding M-stage
• M1: add new titles, terms to shared hash tables, update DFs
• M3: 

• In the R3 stages, the worker threads determined whether splits/merges should be done, 
and how exactly the documents should be split/merged

• The main thread now carries out these split/merge proposals, 
ignoring those that would clash with already-processed proposals

• M2:
• In the R2 stages, the worker threads recommended where to insert which new 

document
• The main thread now carries out these insertions and updates cluster statistics
• While taking into account the splits/merges just carried out in M3



Conclusions and future work

• Multi-threaded clustering approach
• Makes good use of parallel processing within a single computer

• Low amount of locking and waiting

• High throughput at the cost of high latency

• Further paralellism comes from processing documents for different languages 
separately

• Possible future extensions
• Use random projections to speed up the computation of cosine similarities

• Hierarchical clustering

• Distributed processing
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