
A high-performance multithreaded approach
for clustering a stream of documents

Janez Brank, Gregor Leban, Marko Grobelnik

Motivation

• Clustering

• Stream of documents
• On-line approach
• Asynchronous
• Adaptive to changes in the stream

• New clusters, splits, merges, discard old documents etc.

• Need for paralellization
• Current aim: make good use of the parallel processing abilities of an individual

computer
• Multithreading, not distributed computing

• Main application: EventRegistry
• Events Clusters of news articles

Architecture

• NewsCluster web service

• Receives new documents as
HTTP requests

• Notifies listeners (by making
HTTP requests) about changes
• Cluster membership
• Cluster splits/merges
• Cluster medians

• Background tasks
• Delete old clusters

and their documents
• Periodically save state to disk

notify
listeners

Clustering service

Find nearest
centroid,

insert into
cluster

incoming
documents

Preprocess,
tokenize

Splitting and
merging

Maintenance (delete old
content, save to disk)

Underlying clustering approach

• Main idea:
• Assign each document to the cluster with the nearest centroid

• We can't do too much reassigning of documents between clusters
• Because it's an on-line setting and we don't have time

• Because the application wants a certain amount of stability in the clusters

• Cluster maintenance consists of
• Occasional splits/merges

• Deleting old clusters

Underlying clustering approach

• In our input stream, there are many duplicates
or near-duplicates
• Basically the same article coming through several sources

• Two documents are duplicates if they
• Have the same title (modulo whitespace) and

• Very similar TF-vectors (L1 distance below a threshold)

• If a new article is found to be a duplicate of an
existing article, it is discarded without further processing

Discard obvious duplicates

Underlying clustering approach

• Document representation
• Bag of words (TF-IDF vector)

• Bag of concepts [if provided by the user]

• Relative weight of each part in the resulting
feature vector is customizable

• Cosine similarity is used to compare feature vectors

Discard obvious duplicates

Prepare feature vector

Underlying clustering approach

• The document will be assigned to the cluster
whose centroid is the closest to the document
• Compute cosine similarity between the document

and the centroids of all clusters

• If even the closest centroid is far enough,
start a new cluster containing just this document

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Underlying clustering approach

• Each cluster maintains various statistics that
are updated incrementally when the cluster
changes
• Sum of feature vectors

• Per-feature variances

• Medoid

• The system supports weighting documents with
exponentially time-decaying weights
• But this is currently not used in our application

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Insert document into cluster

Underlying clustering approach

• After every few additions, we consider splitting
the cluster into two subclusters
• The method is based on bisecting k-means
• Project all points onto a line and split them

based on whether they fall left or right of the
projection of the centroid

• In the first pass, the line is simply the principal component,
later it's a line through the centroids from the previous pass

• Accept the split if:
• The Bayesian information criterion is met, and
• The resulting subclusters would not meet our merge criteria

• Split by timestamp:
• If the variance of timestamps is above a threshold
• Split a cluster into an "older" and a "newer" subcluster
• BIC is used to choose the relative size of the subclusters
• Hopefully the older subcluster will be discarded soon

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Insert document into cluster

Consider splitting

Underlying clustering approach

• After every few additions, we consider merging
the cluster with some other cluster
• Candidates for merging are those clusters whose

centroid is the closest to our (in terms of cosine similarity)

• Centroids tend to be dense vectors, so cosine
computations are slow
• Use "pruned" centroids for an intial filtering step

• Accept the merge if:
• Cosine similarity is above a threshold; or

• Lughofer's ellipsoid overlap criterion

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Insert document into cluster

Consider splitting

Consider merging

Discard duplicates
0%

Prepare feature vector
1%

Find nearest centroid
54%

Insert into cluster
0%

Split
2%

Merge
43%

Considerations for paralellization

• Which are the most time-consuming
parts of the process?

• 54%: computing cosines between
the new document and all centroids

• 43%: computing cosines between
one centroid and all other centroids
to find merge candidates

• 3%: everything else

Considerations for paralellization

• Shared data structures:
• Title hash table for

duplicate detection

• Word and DF table
for bag-of-words vectors

• Cluster membership
and statistics

Hash table of titles etc.

Hash table of words
and their DFs

Clusters

Discard obvious duplicates

Prepare feature vector

Find nearest centroid

Insert document into cluster

Consider splitting

Consider merging

Downsides of fine-grained paralellization

• Naive idea: assign each document
to one worker thread
• This thread executes the entire

clustering algorithm for this
document

• Downside #1: too much locking

• Downside #2: information
relevant to the same cluster
is scattered across multiple
worker threads

Thread 1

Computes
cosine
between C
and document d1

(for insertion)
or between C
and centroid C'
(for merging)

Thread 2

Inserts d2

into C,
updates
centroid etc.

Thread 3

Trying to
split C
into C1

and C2

Thread 4

Trying to
merge C
with C3

Cluster C

Avoiding cluster-level locking

• If we want to avoid per-cluster locking:
• No thread may modify a cluster

• While some other thread is looping through clusters
(to find the nearest centroid or to find merge candidates)
• But each thread spends 95% its time doing this

• And yet each thread will need to modify a cluster at some point
(to insert the new document into it)
• If it has to wait for all other threads to finish looping through clusters,

that's a lot of waiting

• And it doesn't help much with the problem of having multiple
threads trying to do different things to the same cluster

Read and write stages

• We can rephrase our
approach a little to make
it clearer which steps
need to modify shared
data structures

Hash table of titles etc.

Clusters

Check if duplicate
Tokenize document
Prepare TF vector
(except new terms)

Finalize TF-IDF vector
Find nearest centroid

Consider splitting / merging

Hash table of words
and their DFs

Store the title
Update word table, DFs

Insert document into cluster

Perform split / merge

R1

R2

R3

M1

M2

M3

Main vs. Worker threads

• There is no reason why all the steps
should be done by the same thread
• N worker threads:

perform read stages

• 1 main thread: performs modify
stages for all the requests

• Only the main thread modifies
any global data structures

Multi-threaded clustering engine

incoming
document

queue

processed
document

queue

R-stage
queues

M-stage
queues

main
thread

worker
threads

Barrier-based parallelization

• Main thread needs to block all worker threads
while it updates the shared data structures
• Set a "barrier" flag to stop

issuing new jobs to worker threads
• Wait for all worker threads to

finish their current job
• Main thread can now

modify shared data
• Clear the barrier flag so the

worker threads can resume

• We have a barrier once per sec
• To reduce the amount of time spent waiting
• This means each requests needs

3 seconds to be fully processed

Main thread sleeps 1 sec

Set barrier flag; wait for
workers to finish current jobs

Main thread modifies
shared data structures,
clears barrier flag

Main thread sleeps 1 sec

Workers
process
jobs in
a loop

Workers sleep, wait
for end of barrier

Barrier processing in the main thread

• For each request that went through an R-stage since the previous
barrier, we now have to perform the corresponding M-stage
• M1: add new titles, terms to shared hash tables, update DFs
• M3:

• In the R3 stages, the worker threads determined whether splits/merges should be done,
and how exactly the documents should be split/merged

• The main thread now carries out these split/merge proposals,
ignoring those that would clash with already-processed proposals

• M2:
• In the R2 stages, the worker threads recommended where to insert which new

document
• The main thread now carries out these insertions and updates cluster statistics
• While taking into account the splits/merges just carried out in M3

Conclusions and future work

• Multi-threaded clustering approach
• Makes good use of parallel processing within a single computer

• Low amount of locking and waiting

• High throughput at the cost of high latency

• Further paralellism comes from processing documents for different languages
separately

• Possible future extensions
• Use random projections to speed up the computation of cosine similarities

• Hierarchical clustering

• Distributed processing

Multi-threaded clustering engine

incoming
document

queue

processed
document

queue

R-stage
queues

M-stage
queues

main
thread

worker
threads

