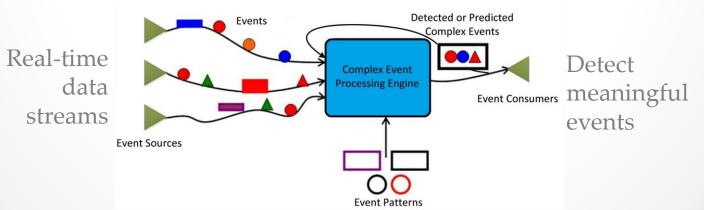
Complex Event Detection and Prediction in Traffic

Blaž Kažič, Dunja Mladenić, Luka Bradeško

Al Lab, Jozef Stefan Institute, Jozef Stegan International Postgraduate School Ljubljana, Slovenia

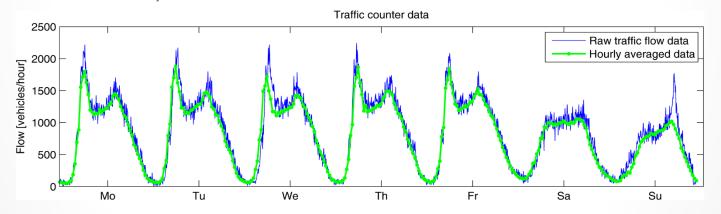
Motivation

- Develop Complex Event Processing system (CEP) that could detect (and predict) complex events in traffic
- Background knowledge required:
 - From domain expert
 - Using data mining techniques



Complex events in traffic

- Most traffic is caused by predictable events such as working schedules
 - Known bottlenecks, School schedules, Holidays,...



 Research how bigger social events affects on traffic nearby – Extract rules

Outline

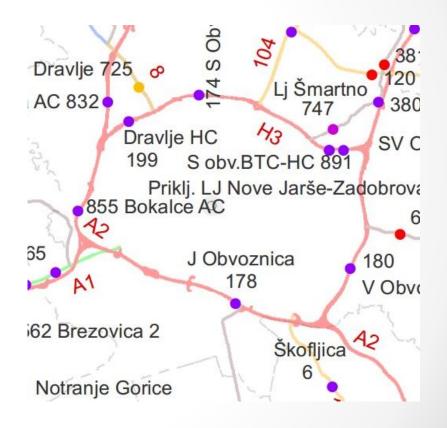
- Data description
 - Description of used data sources
- Data preprocessing:
 Complex event detection
 - Database of extracted complex events
- Data mining results:
 - Analyze how social events affect on nearby traffic
 - Find correlations between different complex events
 - Find rules to predict complex traffic events

Data description

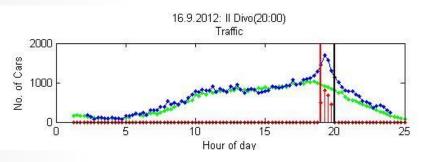
- Traffic Counters

 Flow (vehicles/hour)
 5 min stream
 2011-2013
- Social events
 - 50 major social events
 - Stadium Stozice
 - Demand (1-4)
- Parking sensors

 Parking availability count



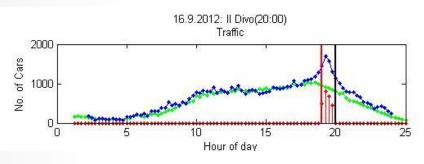
Complex event detection Traffic data



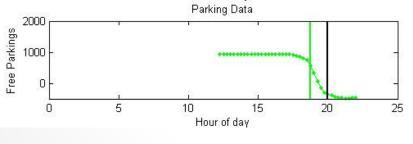
Traffic complex event: "t – 60"

- Complex event is considered as the start of anomaly
- Local averages are used to described "normal" traffic
- Anomaly: if RMSE is larger than certain threshold

Complex event detection Parking data



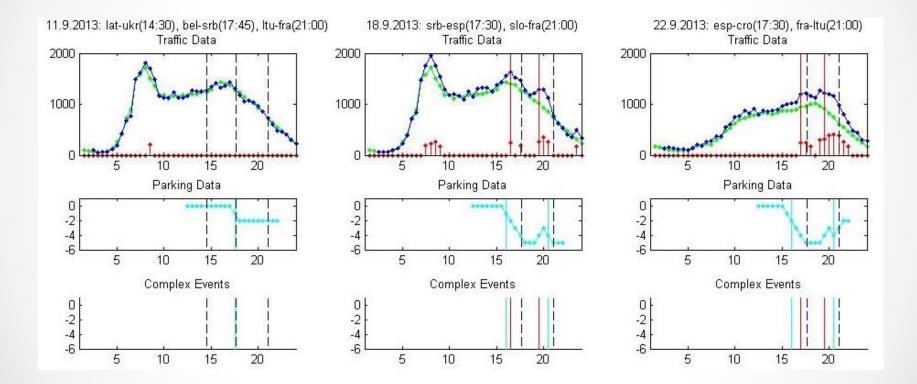
Traffic complex event: "t – 60"



Parking complex event: "t – 90"

- Parking sensor did not have specific daily pattern
- Complex event in parking sensor is considered as start of "downward trend" in parking availability

Complex event detection



Extracted data set

Event Description	Date	Hour	Visitors	Demand	Parking Sensor	Traffic Sensor
SLO - UKR	21.09.2013	21:00	10000	4	t-90	t-90
ESP - CRO	22.09.2013	17:30	6050	2	t-90	t-30
FRA - LTU	22.09.2013	21:00	10000	4	t-30	t-90
Elton John	11. 11. 2011	21:00	8000	3	?	t-60

- Event demand attribute: 4 possible values (1-4)
- Parking sensor attribute: 5 possible vales ("no" "t-90")
- [Target] Traffic sensor attribute: 5 possible vales ("no" "t-90")
- Number of instances: 50 (number of events)

* UCI Machine Learning Repository – Dogers Loop Sensor Data Set (81 events)

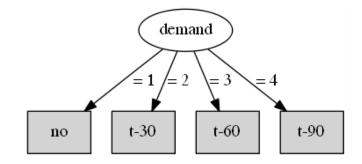
* "Adaptive event detection with time-varying Poisson processes" A. Ihler, J. Hutchins, and P. Smyth. Proceedings of the 12th ACM SIGKDD Conference (KDD-06), August 2006.

AI Lab, JSI

6.10.2014 • 9

Decision tree

Decision Tree (*Wekas J48) - Pruned



- Target attribute: Traffic
- Evaluation:

Correctly Classified Instances: **76.6** % (**36**) Incorrectly Classified Instances: **23.4** % (**11**)

Baseline Classification (ZeroR): 38.3%

===	=== Confusion Matrix ===				
a	b	с	d < classified as		
17	0	0	1 a = no		
3	4	1	1 b = t-30		
1	1	8	2 c = t-60		
0	0	1	7 d = t-90		

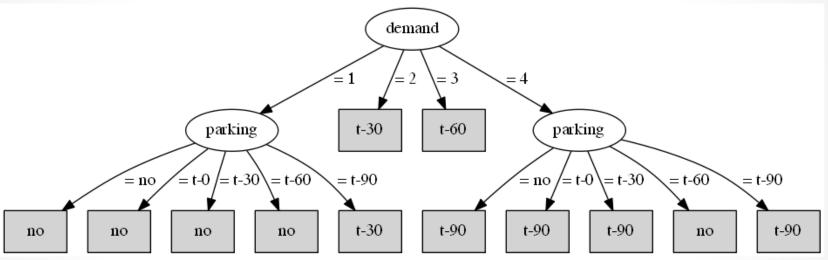
• Al Lab, JSI

* Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.

6.10.2014 • 10

Decision tree

• Decision Tree (Wekas J48) - Unpruned



• Evaluation:

Correctly Classified Instances: **74.5 % (35)** Incorrectly Classified Instances: **25.5 % (12)**

Baseline Classification (ZeroR): 38.3%

	=== Confusion Matrix ===					
a	b	с	d		< classified as	
17	0	0	1	l	a = no	
3	4	1	1	I	b = t - 30	
1	2	7	2	L	c = t - 60	
0	0	1	7	I	d = t - 90	

Rule learner

JRIP Rules - Pruned

• Evaluation:

Correctly Classified Instances: **76.6% (36)** Incorrectly Classified Instances: **23.4 % (11)**

Baseline Classification (ZeroR): 38.3%

=== Confusion Matrix ===
a b c d <-- classified as
17 0 0 1 | a = no
3 4 1 1 | b = t-30
1 1 8 2 | c = t-60
0 0 1 7 | d = t-90</pre>

Rule learner

JRIP Rules - Unpruned

```
JRIP rules:
______
(demand = 4) and (parking = t-30) => traffic=t-90
(demand = 4) and (parking = t-90) => traffic=t-90
(demand = 2) => traffic=t-30
(demand = 3) and (parking = t-90) => traffic=t-60
(demand = 3) => traffic=t-60
=> traffic=no
```

• Evaluation:

Correctly Classified Instances: **74.5 % (35)** Incorrectly Classified Instances: **25.5 % (12)**

Baseline Classification (ZeroR): 38.3%

=== Confusion Matrix ===				
a	b	с	d < classified as	
18	0	0	0 a = no	
3	4	1	1 b = t-30	
2	1	8	1 c = t-60	
2	0	1	5 d = t-90	

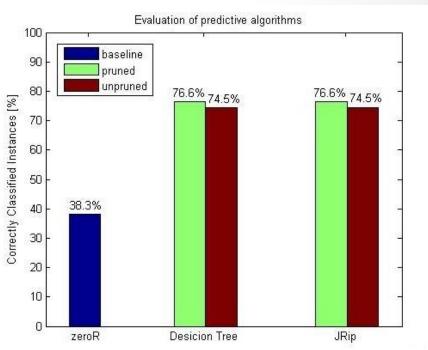
Conclusions

- Extracted rules:

 demand 4 -> traffic "t-90"
 ...
- More data sources, more complex rules

 Weather, traffic reports, ...
- Can lead to automated rule generation
 - Extracting rules for large number of sensors

Al Lab, JSI



Thank You any questions?

