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Fossil carbon used by humans per year 10 billion t
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Are We Smart Enough in Using Plant Biomass?

Future: Target → more efficient & alternative applications for plant biomass 

Cellulose: Fuel, Housing, Clothing, Paper 

Starch, Sugars: Food, Fuel 

Current: Food, Fuel and Materials from Plant Polysaccharides

Plant Biomass Fossil Biomass
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Advanced Functional Materials
Technologies and Products

„Key enabling technologies (KET) in 
EU Horizon2020“

Biosensors

Organic 
electronics



• Superhydrophobic surfaces (lotus-effect)
• Microreactors, Microfluidics
• (Bio)Sensors
• Microelectronics, organic electronics, organic thin film transistors 

(OTFT)

• Thin polymer substrates by spin coating

Biosensors and Electronics often Require
Patterned Surfaces

polymer film

rotating substrate

polymer solution
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Patterning of Cellulose Thin Films by  
Enzymes
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AFM image cellulose 
stripe

Fluorescence microscope image of a 
structured cellulose film 

Adv. Funct. Mater., 2013, 23, 308.
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AFM image cellulose 
stripe

Fluorescence microscope image of a 
structured cellulose film 
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Patterning of Cellulose Films via Vapor Phase 
of HCl and Enzymatic Digestion
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Wolfberger et al. Molecules 2014, 19, 16266-16273; doi:10.3390/molecules191016266

Photolithography for High Resolution Patterns

1 μm resolution
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• PAG used for 2-D patterning also TPA active
• Submicron structures in 200 nm cellulose thin film

FWHM: 554 nm
full width at 
half maximum

Patterning using Two Photon Absorption 
(TPA)

Wolfberger et. al. Cellulose, 2014 in press, DOI 10.1007/s10570-014-0471-4

600 nm resolution
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0.08
Before
Hybridization

After 
Hybridization

DNA/CMC/EDC DNA/CMC

80 nM DNA can be detected – 0.8 mg per liter

EU Project application:
Vircell - Spanish bio-diagnostics company

Application as DNA Biosensor
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• Incompletely regenerated 
cellulose performs best 
regarding dielectric constant e

• e TMSC (with DSSi = 0.5) = 4.8  
Al2O3 =  4.5, SiO2 = 3.9

v(OH) v(SiOC)

A Cellulose Thin Film as a Dielectric in Organic
Thin Film Transistors

• Partial regeneration of TMSC for
OTFTs

Film thickness 32 nm, pentacene as organic semiconductor

Wolfberger et. al. Cellulose, 2014 in press, DOI 10.1007/s10570-014-0471-4
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Al2O3 =  4.5, SiO2 = 3.9

v(OH) v(SiOC)

A Cellulose Thin Film as a Dielectric in Organic
Thin Film Transistors

• Partial regeneration of TMSC for
OTFTs

Gate leak currents: 80 pA Von: -0.8 V Vthreshold: -1.25 V

Film thickness 32 nm, pentacene as organic semiconductor

Wolfberger et. al. Cellulose, 2014 in press, DOI 10.1007/s10570-014-0471-4
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