David van Leeuwen

TNO submission NIST RT05s SAD/SPKR

 $\Sigma_{\rm L}$

Defence, Security and Safety

TNO | Kennis voor zaken

Reasons for TNO to join RT05s/spkr

- Running Broadcast News speaker segmentation/clustering speech recognition system for Dutch since 2001[†]
 - segmentation necessary for
 - on-line processing
 - feature stream time reversal in Abbot acoustic NN
 - low latency
 - poor clustering
- Active in NIST speaker recognition evaluations since 2003
- Takes part in AMI EU meeting project
 - scenarios, data collection, data processing, interpretation, presentation
 - speaker segmentation/clustering
- Problem definition
- Evaluation measures

Speaker Diarization Error rate (SDE)

Speech Activity Detection a necessity

- Speaker diarization error rate
 - Error speaker time / spoken time
- Without speech activity detection:
 - All non-speech time is false alarm speaker error time
 - Total time T, spoken time T_s

$$SDE > \frac{T - T_s}{T_s}$$

- typical meeting scenario $T_s/T \approx 2/3 \Longrightarrow \text{SDE} > 50 \%$
- SAD important in RT05s speaker diarization
 - ICSI offered SAD output to us
 - contrastive SPKR condition

SAD approaches

- 1)Energy based
 - e.g., all frames with energy > 20 dB under meeting maximum
 - works fairly well for telephone speech, speaker recognition
 - doesn't work with distant microphone
 - SAD error $\simeq 50\%$
- 2)Two-phone speech recognition system
 - speech + non-speech 3-state LtoR phone models
 - Sonic decoder, 2-phone grammar
 - no output
- 3)Two-state Viterbi GMM decoder "ptsamiditw"
 - 16 mixtures/model
 - calculate maximum likelihood state sequence
 - apply some smoothing
 - seems to work

SAD results ptsamiditw

- GMM training, 12 PLP+energy+delta
 - 5 "train" AMI meetings from dev test
 - non/speech labels from SPKR reference files
 - thanks Xavier Anguera, ICSI
- decoder parameter tuning
 - 5 "test" AMI meetings from dev test
 - parameters
 - prior odds non/speech
 0.01
 - transition probability ratio 10⁻⁵
- Results

6

SAD error rate

- AMI dev test set 10.3 %
- RT04s CMU 2.8 %
- RT05s 5.0 %

Speaker Segmentation

7

- Uses output from SAD, 12 PLP+energy
- Based on Bayesian Information Criterion, Chen&Gopalakrishnan[†]

•
$$\Delta \text{BIC} = \frac{1}{2} \left(N_x \log |\Sigma| - N_A \log |\Sigma_A| - N_B \log |\Sigma_B| - \lambda N_M \log N_x \right)$$

• $N_x = N_A + N_B$ number of frames considered in current "window"

store aggregated "sufficient statistics" for covariances

TNO Defence, Security and Safety [†]Proc. DARPA broadcast news transcription and understanding, 1998

Speaker clustering

- Uses output from speaker segmentation
- Agglomerative clustering
- Uses "Gish distance measure" for finding closest segments

$$G(c_i, c_j) = \frac{1}{2} \left((N_i + N_j) \log |\Sigma_m| - N_i \log |\Sigma_i| - N_j \log |\Sigma_j| \right)$$

Condition for merging clusters based on BIC

$$\frac{1}{2}\lambda_c N_M \log N_x - G(c_i, c_j) > 0$$

- N_x is total number of frames in entire meeting
- Inefficient for large number of initial segments
 - but preferred over "online" version of BN system
- Tuning parameters
 - AMI "test" split development test data

•
$$\lambda_{seg} = 1.5$$
 $\lambda_{clust} = 14$

NIST RT05s speaker diarization results

- "Multiple distant microphones" = single distant mic
- no overlap
- SDE, in %

	SAD input to SPKR			parameters	
Test set	TNO	ICSI	perfect	optimi	zed
AMI dev	35.7		45.9	45.3	?
RT04s – CMU	35.4		31.9	25.6	
RT05s	35.1	37.1	32.3	19.0	

- RT05s speaker misses, false alarms
 - misses: 13/53 = 24.5% speakers, 0.4% speaker time
 - false alarms: 5/53 = 9.4% speakers, 6.6% speaker time

Discussion / conclusions

- SDE Evaluation measure
 - harsh on T_{FA} because $T T_{FA}$ in denominator
 - weights long duration speakers more
 - advantageous to ignore short duration speakers
 - high λ_{clust}
- BIC segmentation / clustering
 - nice idea based on first principles
 - still tunable parameters λ
 - why full covariance single mixture GMMs?
 - cancellation of exponent in likelihood calculation

$$\log \prod_{i} N(x_i, \mu, \Sigma) = -\sum_{i} \log(2\pi)^{d/2} \sqrt{|\Sigma|} - \underbrace{\frac{1}{2} \sum (x-\mu)^T \Sigma^{-1} (x-\mu)}_{0}$$

• how about diagonal covariance, multiple mixtures?

No time / plans for next evaluation

- Use decoder for clustering process
 - use diagonal covariance GMM for speaker model
 - include overlap between speakers in network
- Use multiple distant microphone data
 - SAD: results from ICSI
 - SPKR: RT05s results not hopeful
- Investigate "absolute speaker ID"
 - "speaker spotting"
 - speaker tracking
 - speaker priors and evaluation measure
 - speaker speaking time entropy?*

