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Statistical Relational Learning: Generalization of 
Multi-variate Learning

I. Bayesian Networks for Relational Learning

II. Markov Networks for Relational Learning

III. Statistical Mixture Models for Relational Learning

IV. Latent Factor Models for Relational Learning

V. Machine Learning with Knowledge Graphs
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I. Bayesian Networks for Relational 
Learning

a: Introduction
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Classical Bayes Net

• Chest Clinic

DDR English
Thal, Austria

))(|)(( zsmokerzhasLCP
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Including Father and Grandfather

DDR English
Thal, AustriaJack fatherOf

John

Jim

fatherOf

))(),(|)(( zCfatherHasLzsmokerzhasLCP



Page 7 September 2014 2nd MLPM Summer School   2014-09-15

Income

Age

Income

Ph.D

))(),(|)(( zhasPhDzmiddleAgezomehasHighIncP
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Income (cont’d)

Age

Income

Ph.D

Jack

Age

Income

Ph.D

Mary

Age

Income

Ph.D

David
friendOf friendOf

))(),(),(
|)((

zFriendshighIncomezhasPhDzmiddleAge
zomehasHighIncP
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Relationships

loves(Jack, Mary)

Jack Mary

likes

loves

likes(Jack, Mary)

We can also have probabilistic dependencies involving relationships

Note that there is the dependency graph (grey) and the triple graph 
(ontology, knowledge graph) (red) (dual!)

Not to be confused!

)),(|),(( yzlovesyzlikesP
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Relationships (cont’d)

bornIn(Mary, 
Paris)

Paris

“Born in Paris” can predict “Lives in France”

But do we need to learn this for all cities and all countries?

France
Mary

bornIn

livesIn
???livesIn(Mary, 

France)

)),(|),(( PariszbornInFrancezlivesInP
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Relationships (cont’d)

Paris partOf

France
livesInMary

bornIn

???livesIn(Mary, 
France)

bornInPartOf(Mary, 
France)

bornInPartOf

)),(|),(( yzOfbornInPartyzlivesInP

),(),(.:),( ytpartOftzbornIntyzOfbornInPart



Page 12 September 2014 2nd MLPM Summer School   2014-09-15

I: Bayesian Networks for Relational 
Learning

b: Review of Bayes Nets
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Why Bayes Nets

There are cases where supervised learning is not 
applicable: when there is not one target variable of 
interest but many, or when in each data point different 
variables might be available or missing

Typical example: medical domain with many kinds of 
diseases, symptoms, and context information: for a 
given patient little is known and one is interested in the 
prediction of many possible diseases and procedures

1X 2X
3X

Y

1X

2X

3X
Y
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Definition of a Bayes Net
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Joint Probability Distribution
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Mathematical Foundation for Bayes Nets
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Causal Probabilistic Networks

When the ordering of the variables corresponds to a causal ordering, we obtain a causal 
probabilistic network
A decomposition obeying the causal ordering typically yields a representation with the 
smallest number of parent variables, i.e., the smallest number of links
For causal probabilistic networks, the assumption is that the un-modeled factors should 
only significantly influence individual nodes (and thus appear as noise), but NOT pairs or 
larger sets of variables (which would induce dependencies)!
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Design of a Bayes Net

The expert needs to be clear about the important variables in the domain
The expert must indicate direct causal dependencies by specifying the directed links in 
the net
The expert needs to quantify the causal dependencies: define the conditional probability 
tables
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Inference
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Inference: Marginalization and Conditioning
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Holmes Net

Burglary

Alarm

GibbonWatsonDaughter

Earthquake

RadioReport

?
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Microsoft‘s Printer Trouble Shooter
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Alarm Net

Application: monitoring intensive-care patients
37 variables
509 parameters  …instead of  2^37
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Inference in Bayes Nets without Cycles when the 
Link Directions are Removed

By construction there are no cycles in the directed net; the structure of a Bayesian net is a directed 
acyclic graph (DAG)
But there might be cycles when one ignores the directions
Let's first consider the simpler case without cycles in the undirected graph; the structure of the Bayes
net is a poly-tree: there is at most one directed path between two nodes
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Pearl‘s Belief Propagation

V

U2

V1 V2

U1

(U2)

(V1)
(V2)

(U1)

(U1)

(V2)

(V1)

(U2)
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Approximate Inference

The junction tree algorithm performs correct inference also in Bayes nets 
with cycles; but with large loops the algorithm can be inefficient
Approximate methods

Sampling-based methods
Markov Chain Monte Carlo (MCMC) 

Gibbs sampling
Mean-field inference
Loopy belief propagation

Loopy belief propagation:  the application of belief propagation to Bayes
nets with cycles (although strictly not correct)
The local update rules are applied until convergence is achieved 
(convergence is not guaranteed)
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Design of a Bayes Net (cont’d)

The expert needs to be clear about the important variables in the domain
The expert must indicate direct causal dependencies by specifying the directed 
links in the net
The expert needs to quantify the causal dependencies: define the conditional 
probability tables
This can be challenging if a node has many parents: if a binary node has n
binary parents, then the expert needs to specify 2^n-1 numbers!
One often makes simplifying assumptions; the best-known one is the noisy-or 
assumption and the expert only needs to specify n parameters
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Maximum Likelihood Learning
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MAP-estimate for Integrating Prior Knowledge
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Missing Data: EM 
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Missing Data: M-Step
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Structural Learning in Bayes Nets
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Greedy Search



Page 34 September 2014 2nd MLPM Summer School   2014-09-15

Cost Function
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Constrained-Based Methods for Structural Learning

One performs statistical independence tests and uses those to decide 
on network structure
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Causal Structure in Gene Expression Data

Gene expression data

Figure from N. Friedman

Genetic pathway
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Some Comments on Causality

In some cases the causal net has been designed by an expert
Causal world assumption 
All relevant variables need to be included
Un-modeled variables must appear as local “noise” on nodes (otherwise they 
would induce correlations)

Same conditions apply for the learning causal structure
An additional aspect: structural uncertainty with finite training data  
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Quantifying the Causal Effect

In a causal Bayes net the causal effect can be evaluated easily
Remove all links into the possible cause node
In case you want to evaluate the causal effect in a specific context: condition on 
context variables, e.g., gender, age
Do inference in this network and calculate the conditional probability of the possible 
effect node when the cause node is true and false
Evaluate the difference in the conditional probabilities of the effect node in both cases

Genetics Genetics

Potential cause node

effect node

Is there a causal 
effect of smoking 
on dyspnea?
Is there a causal 
effect of smoking 
on dyspnea given 
that the person 
has tuberculosis?
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I: Bayes Nets for Relational Learning
c: Bayes Nets for Relational 
Learning 
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Relational Complexities

As discussed, if we consider relationships between patients, there can be some 
nonlocal propagation of information (e.g., correlation between father and child 
concerning, smoking, bronchitis, or cancer)
We will see that by considering binary relations such as fatherOf or friendOf we 
can get  dependencies between nodes of potentially all patients

We  cannot treat each patient independently of the others! 
Technically, the whole observed world becomes one point
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Relational Hierarchy

Relationships are naturally being considered in first-order logic (FOL) and in 
relational databases (RDBs)

Let's  look at three relational complexities:
A propositional Bayes net
A Bayes net with unary relations/predicates (the classical learning scenario)
A Bayes net with also binary relations/predicates
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I. Propositional Bayes Net

Nodes in a propositional Bayesian network  represent  atomic propositions as 
Alarm, WatsonCalls, DaughterCalls

Burglary

Alarm

GibbonWatsonDaughter

Earthquake

RadioReport
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II. Template Bayes Net with Unary
Predicates/Relations
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Predicates, Atoms, Ground Atoms, Relations and 
Tuples
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Database: 
Set of Relations (Tables)

smoker
Jack
John
Mary

hasB
Jack
Mary

hasLC
Jack

hasT
Mary

visitA
John
Mary

posX
John
Mary

hasD
John
Jack

))(|)(( zsmokerzhasLCP

Here is where the Bayes net is: 
On the schema level
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Another Representation: Matrix

visitA smoker hatT hasLC hasB posX hasD
John 1 1 0 0 0 1 1
Mary 1 1 1 0 1 1 0
Jack 0 1 0 1 1 0 1
Jim 0 0 0 0 0 0 0
Jane 0 0 0 0 0 0 0

We can display the data as a matrix
Possible World: truth assignments to all possible ground atoms (as defined by 
the relation tables or the design matrix) : 

All possible ground atoms 
(all possible  matrix 

entries)

The truth values of those
ground atoms 

(here the actual matrix 
entries (0/1))

x



Page 47 September 2014 2nd MLPM Summer School   2014-09-15

Template and Ground Bayes Net

The real thing is the ground Bayes net
The template Bayes net is a template which specifies the probabilistic 
dependencies in the ground Bayes net: 

Template Bayes Net

Jack John Mary

Ground Bayes Net
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III. Template Bayes Net with Binary 
Predicates/Relations
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Database:
Set of Relations (Tables)

smoker
Jack
John
Mary

fatherOf
John Jack

hasLC
Jack

hasT
Mary

visitA
John
Mary

))(),(.),(|)(( yhasLCzyfatherOfyzsmokerzhasLCP

Note that there is a loop on the template level but not on the level of the ground 
atoms/ground Bayes net, since Jack cannot be his own father
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Including Father and Grandfather

DDR English
Thal, AustriaJack fatherOf

John

Jim

fatherOf

))(),(|)(( zCfatherHasLzsmokerzhasLCP
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likes John Jack Mary
John 0 1 0
Jack 0 0 0
Mary 0 0 0

loves John Jack Mary
John 0 1 0
Jack 0 0 0
Mary 0 0 0

Tensor

Recall that the unary ground atoms can nicely be represented as a matrix

The binary ground atoms can be represented as a 3-way tensor (set of 
matrices) 

fatherOf John Jack Mary
John 0 1 0
Jack 0 0 0
Mary 0 0 0
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Triple Graph

Recall that the unary relations can nicely be represented as a matrix
The binary relations can be represented as a 3-way tensor (set of matrices) 

loves(Jack, Mary)

Jack Mary

likes

loves

likes(Jack, Mary)



Page 53 September 2014 2nd MLPM Summer School   2014-09-15

Specifying Dependencies

Again: Each ground atom must appear exactly once on the left side of 
a conditional probability (or unconditional, in the case of no parents)

(subsets of) FOL provides powerful means to derive meaningful views 
to be used as parent nodes:

Datalog (a subset of FOL) can efficiently be executed in relational 
databases

))(),(.),(|)(( yhasLCzyfatherOfyzsmokerzhasLCP
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Unary Heads
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Binary Heads
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Binary Heads (cont’d)

bornIn(Mary, 
Paris)

Paris

“Born in Paris” can predict “Lives in France”

But do we need to learn this for all cities and all countries?

France
Mary

bornIn

livesIn
???livesIn(Mary, 

France)

)),(|),(( PariszbornInFrancezlivesInP
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Binary Heads (cont’d)

)),(),(.|),(( ytpartOftzbornIntyzlivesInP

Paris

France
livesInMary

bornIn

???livesIn(Mary, 
France)

bornInPartOf(Mary, 
France)

bornInPartOf
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Likelihood (Still Just Counting)
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Inference
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Missing Information: Ground Atoms / Tuples

visitA smoker hatT hasLC hasB posX hasD
John 1 1 0 0 0 1 1
Mary 1 1 1 0 1 1 0
Jack ? 1 0 1 ? 0 1

0 0 ? 0 0 0 0
0 0 0 0 0 0 0

The world should be complete (that's why it is called the world)
In reality:  The world is part of a greater world
States of ground atoms are missing

If missing at random, this can be handles by some form of EM.
Often missing is treated as negative evidence (0) in training (closed-
world assumption) and one can learn with a complete data set
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Missing Information: Entities

A test entity (e.g., new patient) belonging to the same world  introduces 
new ground atoms. 

In principal one would need to retrain the whole model but there 
are efficient approximations by applying learned templates also to 
the new entity

A more severe problem is how the training data was generated. 
Example: if I want to study social interactions between students using a 
relational model, it makes more sense to study all 10000 students from 
one university than it would be to study 10000 randomly chosen 
students from the whole US

Ideally one would want to have information on all entities in an 
isolated community
Sampling issues (random sampling, link following sampling, ...) are 
an important issue in social network analysis,  in general
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Missing Information: Predicates / Relations

The logical expressions on the right of the conditioning side can be though of as defining 
new predicates/relations

))(),(.),(|)(( yhasLCzyfatherOfyzsmokerzhasLCP

))(),(|)(( zsLCfatherOfhazsmokerzhasLCP

)(),(.:)( yhasLCzyfatherOfyzsLCfatherOfHa

A cluster analysis or a  factor analysis can derive unary predicates (predicate invention)

new predicate!   



Page 63 September 2014 2nd MLPM Summer School   2014-09-15

The World is a Little Bit More Complex

1. Type constraints are typically reliable and can reduce the number of ground 
atoms dramatically
E.g.: only persons can legally get married

2. Subclass hierarchies are typically reliable (a dog is a mammal is a vertebrate 
is an animal … )
Similarly: sameAs, partOf
One solution: materialization (add ground atoms that can be derived from 
background knowledge to the database)

3. A large mouse is different from a large planet. An easy solution:  instead of 
just having the predicate large, one might want to introduce the predicates 
largeRodent and largePlanet

4. Sometimes a good option is to learn several conditional probabilities for a 
predicate and then use a combination scheme (e.g., noisy-or)
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Can We Transfer Knowledge to a New World?

A model is trained in a hospital in Paris
We want to apply it to a hospital in Nantes

Besides the usual problems (different population, ..) this should be possible if 
the Bayesian templates do not refer to entities (constants) which only make 
sense in Paris (e.g., a particular physician)
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Does the Model have Default Knowledge?

If I only know that the new object “dksdjf” is a dog, the model can infer 
default knowledge about  “dksdjf”  (typical dog properties)



Page 66 September 2014 2nd MLPM Summer School   2014-09-15

Parameter Learning
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Structural Learning 
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Structure learning:
Company domain – a dataset of company and company officers obtained from Security 
and Exchange Commission (SEC) data
The dataset includes information, gathered over a five year period, about companies, 
corporate officers in the companies, and the role that the person plays in the company
For testing, the following classes and table sizes were used: Company (20,000), 
Person (40,000), and Role (120,000)

Company Domain

L. Getoor, N. 
Friedman, D. 
Koller, A. Pfeffer
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TB Domain

Structure learning:
Tuberculosis patient domain – drawn from a database of epidemiological data for 1300 patients from 
the SF tuberculosis (TB) clinic, and their 2300 contacts
Relational dependencies, along with other interesting dependencies, were discovered: there is a 
dependence between the patient’s HIV result and whether he transmits the disease to a contact; there 
is a correlation between the ethnicity of the patient and the number of patients infected by the strain

L. Getoor, N. 
Friedman, D. 
Koller, A. Pfeffer



Page 70 September 2014 2nd MLPM Summer School   2014-09-15
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Conclusions

Bayes Nets work well in  relational learning if there is prior knowledge about 
possible candidates for relational dependencies

Problem: it is difficult to avoid loops in the ground Bayes net with  symmetric 
relations such as friendOf

Problem: as always in Bayes nets, one needs to define a complete system, i.e., 
conditional probabilities for each node in the ground Bayes net. This can be 
very demanding

Both problems can be solved by Markov logic networks (MLNs)!

Both Bayes nets and Markov nets are not  ``off-the-shelf” methods. Of the shelf 
methods can be used if there is no or only little prior knowledge about relational 
interactions; relational mixture models (e.g., the IHRM) and relational factor 
models (e.g., RESCAL) are better models in this situation
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Introduction

Markov nets are another way of modeling multivariate distributions

Typically they are better suited for modeling symmetric interactions (e.g., 
friendOf); no concern about directed loops!

Another advantage is that they do not need to be complete: “Just model what 
you know about, the rest is filled in with maximum entropy”

Disadvantages: 
Maximum likelihood learning with complete data is already non-trivial
No causal interpretation 
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From a Bayes Net to a Markov Net

A ground relational  Bayes net specifies a probability distribution  in the form

Here   X stands for a ground atom  and                is the probability that a 
ground atom  with pred=predicate(X) is in state j given that its parents are in 
state k (see previous lecture); predicate(X) returns the predicate of the ground 
atom X

Note that this is also the definition of the complete data likelihood
We can write the complete data likelihood in exponential form

kjpred

N
kjpred

X

kjpredXXPxPL
,,

,,
,,))(par|()(

kjpred
kjpredkjpredX

NXXPL
,,

,,,, logexp)(par|logexp

1,0j

kjpred ,,
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From a Bayes Net to a Markov Net (cont’d)

In learning, one would need to enforce
One can parameterize

10 ,, kjpred 1,,
j

kjpred

kjpredkjpred w ,,,, exp

kjpred
kjpredkjpred

kpred kpred

Nw
Z

L
,,

,,,,

, ,

exp1

N
kjpredkjpredkpred wwZ ,0,,1,, expexp

Now the model is properly normalized for any parameter values
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Markov Logic Network (MLN)

Recall that

is the number of times that in the data the logical formula

is true

In MLN one can use  any FOL formula          (not just the ones derived from 
Bayes nets)
MLN does not require local normalization, i.e. an interpretation of the terms as 
local conditional probabilities; it requires global normalization
MLN does not require a specific number of formulae

kjpredN ,,

kXjXpredX )(par)()(predicate

iF
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Markov Logic Network (MLN) (cont’d)

For an MLN model, we get

where                 is the number of true groundings of formula 

i
ii xNw

wZ
LxP )(exp

)(
1)(

iF)(xN i
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Formulae with only Unary Predicates

. 
Example:

Then                   is the number of times that in the set of patients, a patient is a 
smoker and has bronchitis:

Note that, in contrast to deterministic logic,  there is no problem in MLN if a 
formula is sometimes false.            corresponds to the degree that  formula                
is supported in the training data

)()(.: zhasBzsmokerzFi

)(xN i

iw

),...()(
),()(

MaryhasBMarysmoker
JackhasBJacksmoker

iF
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Formulae with Binary  Predicates

Nothing really new 
Example:

is the number of times that in the set of patients, a patient has lung 
cancer and her/his father has lung cancer

)(),(.)(.: yhasLCzyfatherOfyzhasLCzFi

)(xN i

),...(),()(
),(),()(

JimhasLCMaryJimfatherOfMaryhasLC
JohnhasLCJackJohnfatherOfJackhasLC
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Comments

+ We do not have to worry any more about directed loops!
+ We do not have to worry anymore about completeness! There can be any 
number of formulae (from none to more than there are ground atoms)

Comment: All distributions with the same exponent have the same probability 
(maximum entropy principle). Example: with no formula each configuration of 
the node states has the same probability! The marginal probability of each 
node being in state 1  is then 0.5

- There is no interpretation of a local conditional distribution (no causal 
interpretation)
- The partition function is problematic in learning
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MLN Network for the Chest Clinic

One can generate a graphical representation where the random variables are 
represented as nodes and all nodes in a ground formula are cliques (fully 
connected subnets; links are undirected)
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Inference

Same techniques as in Bayesian models (MCMC, Gibbs,  loopy belief, 
mean field)
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Parameter Learning

Recall that in Bayesian nets, parameter learning with complete data 
was trivial
In MLNs parameter learning is difficult due to the global normalization 
constant  which is a sum over all states

Typical approach: closed-world assumption and optimization of a 
pseudo-likelihood
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Structural Learning

We do not have to worry about directed loops or parameter constraints

Formulae are derived from ILP techniques (FOIL, Claudian)
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Conclusions

Highly recommended reading:
Matthew Richardson and Pedro Domingos. Markov logic networks. 
Machine Learning, 2006

Great software support: Alchemy

Highly popular in logics community

Success sort of depends on good hand-crafted features

Sometimes structural learning finds good features automatically
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III. Mixture Models for Relational 
Learning

Volker Tresp

Siemens Corporate Technology
Ludwig Maximilian University of Munich
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Introduction

We have discussed generalizations of Bayes nets towards relational domains

We have discussed generalizations of Markov nets towards relational 
domains

Both perform well if there is good prior knowledge available about relational 
dependencies, but both approaches are not as suitable as off-the-shelf 
methods

Here we discuss generalizations of statistical mixture models towards 
relational domains

Suitable as off-the-shelf method
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Classical Mixture Model
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Graphical Model

Assumption: H represents latent information that can explain all visible 
attributes 
This is a Bayes net (only that H is unknown)

H

visitA smoker hatT hasLC hasB posX hasD
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Maximum Likelihood Learning
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Expected Counts
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Mixture Models with Unary Variables
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Mixture Models with Binary Predicates
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Graphical Model

Assumption: H represents latent information that can explain the binary ground 
atoms

H

likes(Jack, Mary)

Jack

H
Mary
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Likelihood



Page 96 September 2014 2nd MLPM Summer School   2014-09-15

EM Learning
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likes(Jack, 
Mary)

Global Propagation of Information

Free flow of information:
The parent nodes (here, the H-nodes) block information when they are known but permit the flow of 
information when they are unknown (the case here) 
Collider nodes (here, the binary ground atoms) block information when they are unknown but permit the 
flow of information when they are known (the case here with a closed-world assumption) 

HJack HMary

HJohn

likes(Jack, 
John)

likes(Mary, 
Jack)

likes(Mary, 
John)

likes(John, 
Mary)

likes(John, 
Jack)
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Infinite Hidden Relational Model / Infinite Relational 
Model

Exact  EM is not suitable due to the expensive E-step

Typically, Gibbs sampling or mean field is employed to approximate the E-step

In a fully Bayesian model we apply a Dirichlet prior on 

We can make the transition to infinitely many states and obtain Dirichlet
process mixture models in form of the IHRM/IRM models: these are infinite 
models (nonparametric Bayesian models) in which the number of hidden states 
is determined in the sampling process!

In Gibbs sampling, the parameters        can be integrated out
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Inference

Note that the latent variables are all unknown

As just discussed, there is global propagation of information in the 
network

Thus, the model can use information about the context of an atom, e.g.,  
about a friend's friend, without explicit aggregation (collective learning)

Approximate inference is used (Gibbs sampling, mean field)
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Structural Learning

There is no need for structural learning!

The structure is defined by the relational model
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Gene Interaction and Gene Function

Tasks
Cluster analysis 
Prediction of gene functions given information on the gene level and the protein level, 
as well as information on interactions between the genes

Attribute data: CYGD (Comprehensive Yeast Genome Database) from MIPS (Munich 
Information Center for Protein Sequences)

1000 Genes
Attributes: Chromosome, Motif, Essential, Class, Phenotype, Complex, Function

Interaction data: DIP (data base of interacting proteins) 
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IHRM Model

Ground Network

Task: Genes (1243) have one or more 
functions (14)[1-4] (cell growth, cell 
organization, transport, … ) to be 

predicted; 862 for genes for 
training, 381 for testing

Genes might interact with one another

For a gene one or more phenotypes
(11)[1-6] are observed in the 

organism
How the expression of the gene can 

complex with others to form a larger 
protein  (56)[1-3] 

The protein coded by the gene might 
belong to one or more structural 

categories (24) [1-2]

A gene might contain one or more 
characteristic motifs (351) [1-6] 

(information about the amino acid 
sequence of the protein)

Gene attributes are: essential (an 
organism with a mutation can 
survive?), which chromosome

Ground Network
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Cluster Structure

Some gene clusters: the genes in the same cluster have dense 
interactions; but the genes in the different clusters have rare 
interactions

Node: gene
Link:   interaction 

Color: cluster.
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Relationships
Prediction Accuracy (%)

(without the relationship)
Importance

Complex 91.13 197

Interaction 92.14 100

Structural Category 92.61 55

Phenotype 92.71 45

Attributes of Gene 93.08 10

Motif 93.12 6

The importance of a variety of relationships in function 
prediction of genes

Relevance of Attributes and Relationships
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References
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Conclusions

Relational mixture models have many attractive properties

They are  useful off-the shelf approaches

Good results on some problems

Obtaining convergence can be tricky

In our opinion, the best off-the-shelf approaches with great scalability and great 
predictive results are based on factorization approaches, e.g., the RESCAL 
model described in the following lecture
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IV. Factor Models for Relational 
Learning

Volker Tresp

Siemens Corporate Technology
Ludwig Maximilian University of Munich
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Introduction

Here we discuss generalizations of statistical factor models towards 
relational domains

Suitable as off-the-shelf methods
Highly scalable and excellent predictive performance
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Classical Factor Model

We assume for each random variable a model of the form

10)|(: ,,., ilililil fffXPBernoulli

The most important special cases are a Bernoulli model and a Gaussian model

)|( ,, ilil fXP

),()|(: 2
,,, ililil fNfXPGauss

ilX , random variable with index i in data point with index l
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Classical Factor  Model

We assume for each random variable a model of the form

l
T
iil abf ,

irw
lra

i

l

   variablerandom  tospecifictor latent vec ldimensiona:
point  data  tospecific factorslatent  of vector ldimensiona:

Note that both the dimension-specific and the data point specific factors are 
unknown and have to be learned from data
The solution is not unique; one possible solution can be computed via  singular 
value decomposition (SVD)
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Factor  Model for Unary Relations

We assume for each random variable a model of the form

z
T
upredzupred avf ,

upredrv
zra

upred

z

  tospecifictor latent vec ldimensiona:
entity  describe that factorslatent  of vector ldimensiona:

)|)(( ,zupredfzupredP
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Matrix Algebra

Recall that we can write the possible world unary ground atoms as a matrix

is a matrix where

kzkz

kupredkupred

T

upredz

aA
A

vV
V

AVF
FMP

F
zupredM

M

,,

,,

,

)|(

)()(

is a matrix with the same dimension

is an element-wise conditional probability 

describes the matrix decomposition

is a matrix with

is a matrix that contains the latent 
entity  factors with
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Factor  Model for Binary Relations

We assume for each random variable a model of the form

j k kyjzkjbpredyzbpred aawf ,,,,,,

)|),(( ,, yzbpredfyzbpredP

We can now assume that we should consider all interactions between the 
latent representations of the two involved entities, and one models
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Tensor Algebra

Recall that we can write the possible world binary ground atoms as a tensor 

is a three-way tensor where

kjbpredbpredkj

bpredyz

w

AA
P

yzbpred

,,,,

21

,,

)|(

),()(

R
R

RF
FX

F
X

X

is a tensor with the same dimensions 

is an element-wise conditional probability 

Describes the tensor decomposition

is the core tensor with
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likes(Jack, 
Mary)

The Latent Structure is Similar to the IHRM/IRM 

Free flow of information:
The parent nodes (here, the a-nodes) block information when they are known but permit the flow of 
information when they are unknown (the case here) 
Collider nodes (here, the binary ground atoms) block information when they are unknown but permit the 
flow of information when they are known (the case here with a closed-world assumption) 

sJackJack aa ,1, ,Jack Mary

John

likes(Jack, 
John)

likes(Mary, 
Jack)

likes(Mary, 
John)

likes(John, 
Mary)

likes(John, 
Jack)

sMaryMary aa ,1, ,

sJohnJohn aa ,1, ,
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RESCAL: Cost Functions and Parameter Learning

The model I have just described is known as the RESCAL model
Nickel, Volker Tresp, and Hans-Peter Kriegel. A Three-Way Model for 
Collective Learning on Multi-Relational Data. In Proceedings of the 28th 
International Conference on Machine Learning, 2011

The cost function and the parameter optimization are described in the next 
lecture on „Machine Learning with Knowledge Graphs”
Note that the A matrix is shared between the tensor model for the binary 
relations and the matrix model for the unary relations
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Inference

After learning the ground atoms are all independent



Page 118 September 2014 2nd MLPM Summer School   2014-09-15

Structure Learning 

As in the IHRM/IRM, there is no structure learning
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Conclusions

The RESCAL model has excellent performance and scales well to large data 
sets
For mode details see also the following lecture on  Machine Learning with 
Knowledge Graphs
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V. Machine Learning with 
Knowledge Graphs
Volker Tresp

Siemens Corporate Technology
Ludwig Maximilian University of Munich

Joint work with Maximilian Nickel
With contributions from Xueyan Jiang and Denis Krompass
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Prelude

My background is in Machine Learning and I got involved in Semantic 
Web projects maybe 6 years ago
Learning about the Semantic Web clarified my thinking about many 
things dramatically

Immediate love affaire with RDF
Nothing is ever wrong
No contradictions

DDR English
Thal, Austria
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Prelude

My background is in Machine Learning and I got involved in Semantic 
Web projects maybe 6 years ago
Learning about the Semantic Web clarified my thinking about many 
things dramatically

Immediate love affaire with RDF
Nothing is ever wrong
No contradictions

DDR English
Thal, Austria
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Overview

Why Machine Learning needs Knowledge Graphs
Statistical Relational Learning
Learning with the YAGO Knowledge Graph
Towards Relevant Use Cases
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What is Machine Learning?

Machine Learning versus Statistics versus Data Mining

Statistics focuses on interpretable parameters

Data mining focuses on the discovery of meaningful patterns

Machine Learning focuses on prediction accuracy
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Classification

Classification is the work horse of 
machine learning
Predict class memberships for many 
objects

Very powerful
Surprisingly general
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Typical Classifiers

Predicting class k for input
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zNNzf

zzkvzf

zbwzf

zfzxP

Fixed basis functions

Kernels

Neural Networks

lz

Really the same 
things; deep 
learners would 
call the shallow

10 layers with 1000 neurons per layer
Currently the hottest thing!
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Deep Learning Neural Networks

Google, Microsoft, Facebook, 
Baidu are all investing heaviliy 
in deep learning



Page 128 September 2014 2nd MLPM Summer School   2014-09-15

Detecting Cats in Images

Best performing in detecting cats in images and videos (Andrew Ng)
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Where from here?

A deep learning network sees more cats than any child but is not as good at 
this task
Deep Learning community: we need better unsupervised learning to pre-
structure the network

Maybe we would say: we need background knowledge
Also: we do not just want to detect cats!

Image of cats
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Challenges

Predict all classes: „This is a cat!“ „This is a dog!“ 
„This is a house!“ …

Recognize specific entities: „This my cat Max!“
[In our experiments 107] 

Predict all attributes:  „Max is evil!“

Predict all relationships: „Max likes Mary!“
[In our experiments 1014] [ #of synapses]

Images of cats
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Vision

„You must be president Obama!“
„How is your wife Michelle?“
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Requirement: Understanding of the World

We need to know about the entities, attributes and classes in the world, and  
the various relationships that do or might exist between those

We need ontologies!
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Biomedical Ontologies

International Statistical Classification of Diseases and Related Health Problems (ICD)
Used extensively in billing

SNOMED Clinical Terms (SNOMED CT)
A systematically organized computer processable collection of medical terms providing codes, terms, 
synonyms and definitions used in clinical documentation and reporting.
Application: EHR

RadLex
Unified language of radiology terms for standardized indexing and retrieval of radiology information 
resources

Open Biomedical Ontologies (OBO)
Controlled vocabularies for shared use across different biological and medical domains
Gene Ontology (GO) is a part (genes and gene products)
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For the First Time there Exist Sizable General 
Ontologies: DBpedia, YAGO, Freebase, Knowledge 
Graph

Suchanek, Kasneci, Weikum:  2007

Bollacker, Evans, Paritosh, Sturge, Taylor, 2008

Auer, Bizer, Kobilarov, Lehmann, Cyganiak,  Ives:  2007
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Linked Open Data (Semantic Web)
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Triple  Graphs

Max Mary
likes
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Knowledge Bases are Triple Graphs

Linked Open Data (LOD) and large ontologies like DBpedia, Yago, Knowledge Graph are graph-
based knowledge representations  using light-weight ontologies,  and are accessible to machine 
learners

They are all triple oriented and more or less follow the RDF standard 
RDF: Resource Description Framework
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Overview

Why Machine Learning needs Knowledge Graphs
Statistical Relational Learning
Learning with the YAGO Knowledge Graph
Towards Relevant Use Cases
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Canonical Relational Machine Learning Task

j
k

i ere ,, true or false?

)(1,, l
k

j
k

i zfereP

• So, very simple, we build one classifier for each relation type k
and we are done

• But what is the input                 ?lz
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I. Relational Learning with Known Features
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Popular in learning from the 
Semantic Web

j
k

i ere ,,

features (age, sex, features derived from a neighborhood of the 
entity in the environment of the RDF-graph) 
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II. Relational Learning with Latent Features
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Same, but features are treated as latent (unknown) variables
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unknowns!
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With Latent Features We Get Collective Learning

ia

)( ),( jil
k zx
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k zx
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ie je je

j
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i ere ,, j
k

i ere ,,

Information flow open 
since unknown parents 
states

Information flow open 
since known children 
states

• Information can globally propagate in the network of random variables

• Thus one can learn that: Jack is rich since the father of his father is rich 

ja

)( ),( jjl
k zx
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Model with Polynomial Basis Functions
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But what are good basis functions?
We need to represent the interactions between all feature components
Binary interactions
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Mapping to a Tensor Factorization Problem

Here,            is a r x r matrix

We can take the matrices  for the different relations                                                           
on to of each other and obtain the core tensor R

In tensor notation: We factorize the tensor X
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RESCAL Factorization
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Cost  Functions

Probabilistic View

Gaussian

Bernoulli

Frobenius norm
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Iterative Update

Most efficient: Alternating Least Squares (ALS)
Can exploit data sparsity

(stochastic gradient descent, …)
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RESCAL for Different  -arities
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Unary Relations

Binary Relations

Ternary Relations

In our applications only unary and binary relations are used
The latent entity representation (a-vector) for a given entity is identical in all 
relations and thus information can be shared between all relations, as well! 
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RESCAL for Binary Relations

1
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Scalabilty

Attributes in coupled matrix
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Leading Performance in Link prediction on 
benchmark data sets

Kinship: multiple kinship relations between members of the Alyawarra tribe in central Australia (10,790 
kinship relationships (facts) between 104 persons over 26 relations)
UMLS: The UMLS data set consists of a small semantic network which is part of the Unified Medical 
Language System (UMLS) ontology. 6,752 relationships (facts)  between 135 concepts over 49 relations
Nations: The Nations data set describes political interactions of countries between 1950 and 1965 . It 
contains information such as military alliances, trade relationships or whether a country maintains an 
embassy in a particular country. 2,024 relationships between 14 countries over 56 dyadic relations

BCTF: Bayesian clustered tensor factorization; MRC: Multi-View Relational Classification

Predicting relationships: 
„Max likes Mary“
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Cora Data: Entity Resolution

1295 publication records, where each publication is the subject of a relationship to its first author, a 
relationship to its title, and a relationship to its publication venue
Task: identify which authors, entities and venues refer to identical entities

(basic rules) (complex rules)

Recognizing specific entities: 
„This my cat Max!“



Page 154 September 2014 2nd MLPM Summer School   2014-09-15

Overview

Why Machine Learning needs Knowledge Graphs
Statistical Relational Learning
Learning with the YAGO Knowledge Graph
Towards Relevant Use Cases
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Yago2 Core Ontology

The tensor has 1014 entries!

Siemens – MPII cooperation
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Classification: Type Prediction

(text attributes)

Predicting concepts: 
„This is a cat“
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Writer‘s Nationality: 
Demonstrating Collective Learning

Predicting concepts/attributes: 
„Max is evil“



Page 158 September 2014 2nd MLPM Summer School   2014-09-15

Learning a Taxonomy (-> Ontology)

IIMB 2010 benchmark provided by the Ontology Alignment Evaluation
Around 1400 entities of a movie domain
5 distinct top-level concepts
On the top level: every concept is represented by a sufficient number of entities, while e.g. some level 
2 movie concepts only include two or three entities and therefore are hard to recognize.

Organizing concepts
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Extensions: Nonnegative RESCAL

Nonnegatve RESCAL  (Krompass, Nickel, Tresp)
sparse solutions with clustering properties
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Extensions: Proofs and Bounds

Analysis of generalization bounds when order of the tensor match or do 
not match
Matricization results in a loss of generalization performance

Maximilian Nickel and Volker Tresp. An Analysis of Tensor Models for 
Learning on Structured Data. Proceedings of the ECML/PKDD, 2013
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Overview

Why Machine Learning needs Knowledge Graphs
Statistical Relational Learning
Learning with the YAGO Knowledge Graph
Towards Relevant Use Cases
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Machine Learning with Structured Data and 
Ontologies

Within the domain: 
Prediction of triples
Classification (defining type)
Clustering
Taxonomy Learning
Entity Resolution
Visualization
Querying
Who wants to be Trelenas friends
Can be generalized towards more 
complex probabilistic queries 
(Krompass, Nickel, Tresp, ISWC 2014)  

Outside of the domain (new entities): 
Calculate the latent factors for the new 
entity
Can do all of the tasks above
Object recognition becomes entity 
resolution
Formulate the new object as a query
Object recognition as a query
Queries can become complex
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Clinical Data Intelligence

Goals
Personalized medicine:  modeling the patient in her/his full 
complexity -> patient specific recommendations 
Global modeling of the clinical data / clinical decision 
processes: clinical ontology (concepts and instances)

Use Cases
All data from all patients
Breast cancer
Nephrology
Data from clinical studies

Challenges
Ontologies
Complex relational data (patient in a clinic)
Representing time; sequential data
Decision modeling: decision optimization (confounders, 
causality)
Including unstructured data (reports, images)
Including OMICS data
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Predicting Diagnoses and Procedures
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Machine Learning with Images and Ontologies

Linking textual descriptions in radiology reports to 
medical images
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Neural Tensor Model (Socher et al.)
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• Contrastive max-margin 

objective functions (similar to 
Collobert during pre-training)

• Use Batch SGD
• This means that per epoch, one 

does not adapt wrt all MxMxK
triples but only wrt 2xTxC triples

• M: number of entities
• K: number of relation types
• T: number of true triples
• C: tuning parameter; often 10
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Google Vault (Murphy et al.) 
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Fact extraction: NER, POS, entity linkage 
(map words to entities); complex features to 
predict triple from text; combination scheme 
for all classifiers (Platt scaling to normalize 
outputs). Output: probability for a triple 
(AUC=0.927)

Graph-based prior:  
•Path ranking algorithm (AUC=0.884)
•Graph prior (“RESCAL” variant) 
(AUC=0.882)
•Fused: (AUC=0.911)

All combined:
• (AUC=0.947)

RESCAL3 
where the polynomials are 
replaced by sigmoids
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Conclusions

Knowledge Graphs
First time: large general ontologies available
Useful for solving machine learning tasks

Relational Machine Learning with RESCAL
Scalable relational learning with very competitive performance
Collective Learning
We are working on many improvements/extensions

RESCAL Learning with the YAGO Knowledge Graph
Experimental results in a number of relational learning tasks

Towards Relevant Use Cases
Text understanding
Image understanding
Clinical data


