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= |. Bayesian Networks for Relational Learning

Il. Markov Networks for Relational Learning

lll. Statistical Mixture Models for Relational Learning

IVV. Latent Factor Models for Relational Learning

= V. Machine Learning with Knowledge Graphs
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|. Bayesian Networks for Relational
Learning
*a: Introduction
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* Chest Clinic

P(hasLC(z) | smoker(z))

\

Page 5 September 2014 2nd MLPM Summer School 2014-09-15



P(hasLC(z) | smoker(z), fatherHasLC(z))

Has tuberculosis

Wisit to Asia?

Tuberculosis or cancer

Positive X-ray?

Has lung cancer

Wisit to Asia?

Has tuberculosis

Positive X-ray?

=
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Has hronchitis

fatherOf

Wigit to Asia?

Has tuberculosis Has lung cancer
Tuberculosis or cancer

Fositive X-ray?

Has lung cancer

Tuberculosis or cancer

Has hronchitis

v

Has bronchitis

_
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P(hasHighIncome(z) | middleAge(z), hasPhD(z))
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P(hasHighincome(z) |
middleAge(z),hasPhD(z), highincomeFriends(z))

! Income T Income ? ! Income j

DaV|d Jack
frlendOf frlendOf
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» We can also have probabilistic dependencies involving relationships

P(likes(z, y) |loves(z,Y))

loves(Jack, Mary)

likes(Jack, Mary

» Note that there is the dependency graph (grey) and the triple graph
(ontology, knowledge graph) (red) (dual!)

= Not to be confused!
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= “Born in Paris” can predict “Lives in France”

P(livesin(z, France)|bornin(z, Paris))

= But do we need to learn this for all cities and all countries?

P
’,fﬁveﬂn
- 2?7

Jivesin(Mar
~France
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P(livesin(z, y) | bornIinPartOf (z, y))

bornInPartOf (z, y) := 3t.bornin(z,t) A partOf (t,y)
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|: Bayesian Networks for Relational
Learning
“b: Review of Bayes Nets
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Why Bayes Nets

CO

» There are cases where supervised learning is not
applicable: when there is not one target variable of
interest but many, or when in each data point different

variables might be available or missing @ @ @

» Typical example: medical domain with many kinds of
diseases, symptoms, and context information: for a
given patient little is known and one is interested in the
prediction of many possible diseases and procedures @

QD
GO
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e The random variables in a domain are displayed as nodes (vertices)

e Directed links (arcs, edges) represent direct (causal) dependencies between parent

node and child node

e Quantification of the dependency:

— For nodes without parents one specifies a priori probabilities
P(A=1i) Vi
— For nodes with parents, one specifies conditional probabilities. E.g., for two parents

P(A=iB=3jC=k) Vi jk

Has bronchitis
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e A Bayes net specifies a probability distribution in the form

M

P(X1,... Xy) = || P(Xilpar(Xy))
e |

where par(X;) is the set of parent nodes. This set can be zero

Has bronchitis
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e let's start with the factorization of a probability distribution

M
P(X1,... X)) = | P(XilXa,... Xim1)

1=1

e [his decomposition can be done with an arbitrary ordering of variables; each variable

is conditioned on all predecessor variables

e [he dependencies can be simplified if a variable does not depend on all of its prede-

cessors
PLXG| Xy 500 3 X541 ) = PX;|par(Xy))
with

par(X;) C X1,...,X;1
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Causal Probabilistic Networks

= When the ordering of the variables corresponds to a causal ordering, we obtain a causal
probabilistic network

= A decomposition obeying the causal ordering typically yields a representation with the
smallest number of parent variables, i.e., the smallest number of links

= For causal probabilistic networks, the assumption is that the un-modeled factors should
only significantly influence individual nodes (and thus appear as noise), but NOT pairs or
larger sets of variables (which would induce dependencies)!
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» The expert needs to be clear about the important variables in the domain

» The expert must indicate direct causal dependencies by specifying the directed links in
the net

» The expert needs to quantify the causal dependencies: define the conditional probability
tables

Has bronchitis
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® The most important important operation is inference: given that the state a set of

random variables is known, what is the probability distribution of one or several of the

remaining variables

® Let A be the set of random variables. Let X" C X be the set of known (measured)
variables and let X7 € X'\ X" be the variable of interest and let X" = X"\ (X" U

X 1) be the set of remaining variables
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Inference consists of the following steps:

e We calculate the probability distribution of the known variables and the query variable

via marginalization

PCXR 7% = % FLXy, .- Kgg)
A:"r‘

e [he normalization is calculated as

P = P(XY.X™)
X4

e (Calculation of the conditional probability distributions

P(X%,x™)
P(x™)
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Earthquake

RadioReport

Daughter
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Application: monitoring intensive-care patients

= 37 variables
» 509 parameters ...instead of 2737

ET=n

2nd MLPM Summer School 2014-09-15
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= By construction there are no cycles in the directed net; the structure of a Bayesian net is a directed
acyclic graph (DAG)

= But there might be cycles when one ignores the directions

» Let's first consider the simpler case without cycles in the undirected graph; the structure of the Bayes
net is a poly-tree: there is at most one directed path between two nodes
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Approximate Inference

» The junction tree algorithm performs correct inference also in Bayes nets
with cycles; but with large loops the algorithm can be inefficient

= Approximate methods
Sampling-based methods
Markov Chain Monte Carlo (MCMC)
Gibbs sampling
Mean-field inference
Loopy belief propagation

Loopy belief propagation: the application of belief propagation to Bayes
nets with cycles (although strictly not correct)

The local update rules are applied until convergence is achieved
(convergence is not guaranteed)
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Design of a Bayes Net (cont’d)

» The expert needs to be clear about the important variables in the domain

» The expert must indicate direct causal dependencies by specifying the directed
links in the net

» The expert needs to quantify the causal dependencies: define the conditional
probability tables

* This can be challenging if a node has many parents: if a binary node has n
binary parents, then the expert needs to specify 2*n-1 numbers!

= One often makes simplifying assumptions; the best-known one is the noisy-or
assumption and the expert only needs to specify n parameters
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We assume that all nodes in the Bayesian net have been observed for /N instances
(e.g., N patients)

Let 0; ; 1 be defines as

0; i = P(X; = jlpar(X;) = k)

This means that gi,j,k is the probability that X; is in state j, when its parents are

in the state k (we assume that the states of the parents can be enumerated in a

systematic way)

Let N, : ;. be the number of samples in which X; = j and par(X;) =k

1‘-?-’
The maximum likelihood (ML) estimate is simply

~ Nk

0 p =
1,7, ZJ N’;,j,k




e Often counts are very small and a ML-estimate has high variance

e One simply specifies efficient counts (counts from virtual data) which then can be

. = O be virtual counts for IV, .

treated as real counts Let o, i,j.k

3.}-5
e One obtains the maximum a posteriori (MAP) estimate as

5, . = ikt Niji
33-?3 e
2 il i+ Ny k)
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The problem of missing data is an important issue in statistical modeling

In the simplest case, one can assume that data is missing at random

Data is not missing at random, if, for example, one analyses the wealth distribution

in a city and rich people tend to refuse to report their income

For some models the EM (Expectation Maximization)-algorithm can be applied to
calculate ML or MAP estimates

Consider a particular data point [. In the E-step we calculate the propability for mar-
ginal probabilities of interest given the known information A7" in that data point and
given the current estimates of the parameters 0, using e.g. belief propagation. Then

we get for expected counts

N
E(N; 1) = Z P(X; =7, par(X;) = k|2, 8)
=1



e Based on the E-step, we get in the M-step
. BN, %)

D; i =
" BN )

e E-Step and M-Step are iterated until convergence. One can show that EM does not

decrease the likelihood in each step; EM might converge to local optima

e The E-step is really an inference step

e Here, also approximate inference can be used (loopy-belief propagation, MCMC, Gibbs,
mean-field)
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e One can also consider learning the structure of a Bayes net and maybe even discover

causality
e |n structural learning, several points need to be considered

e [here are models that are structural equivalent. For example in a net with only two
variables A and B one might show that there is statistical correlation between the
two variables, but it is impossible to decide if A — B or A «+— B. Colliders (nodes

where arrow-head meet) can make directions identifiable

e If C' is highly correlated with A and B and A and B are also highly correlated, it

might be clear from the data that C' depends on both A and B but difficult to decide
if it only depends on A or only depends on B
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® In the most common approaches one defines a cost function and looks for the structure

that is optimal under the cost function. One has to deal with many local optima

e Greedy Search: One starts with an initial network (fully connected, empty) and makes
local changes (removal of directed link, adding a link, reversing direction of a link, ...)

and accepts the change, when the cost function improves
e Greedy search can be started from different initial conditions

e Alternatives: Simulated Annealing, Genetic Algorithms
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e As a cost function one might use a cross-validation set

e Alternatively, BIC (Bayesian Information Criterion) is used: Maximize

1 M
— gl ———ogN
N 9 2N 9

(M is the number of parameters; N is the number of data points)

e [he first term is the average log-likelihood and increases with model fit; the second
term penalizes models with many parameters M and becomes less important with

N — oo
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» One performs statistical independence tests and uses those to decide
on network structure
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Causal Structure in Gene Expression Data

Genetic pathway

Gene expression data

Figure from N. Friedman
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Some Comments on Causality

*"|[n some cases the causal net has been designed by an expert
Causal world assumption

All relevant variables need to be included

Un-modeled variables must appear as local “noise” on nodes (otherwise they
would induce correlations)

=»Same conditions apply for the learning causal structure
»An additional aspect: structural uncertainty with finite training data
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Quantifying the Causal Effect

» |n a causal Bayes net the causal effect can be evaluated easily
Remove all links into the possible cause node

In case you want to evaluate the causal effect in a specific context: condition on
context variables, e.g., gender, age

Do inference in this network and calculate the conditional probability of the possible
effect node when the cause node is true and false

Evaluate the difference in the conditional probabilities of the effect node in both cases

Genetics Genetics

Potential cause node

effect node that the person
has tuberculosis?
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Has bronchitis Has bronchitis

Is there a causal

effect of smoking

on dyspnea?

Is there a causal

effect of smoking
on dyspnea given

Oysphnoea? Dyspnoaa?



| Bayes Nets for Relational Learning
=c. Bayes Nets for Relational
Learning
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Relational Complexities

= As discussed, if we consider relationships between patients, there can be some
nonlocal propagation of information (e.g., correlation between father and child
concerning, smoking, bronchitis, or cancer)

= We will see that by considering binary relations such as fatherOf or friendOf we
can get dependencies between nodes of potentially all patients

We cannot treat each patient independently of the others!
Technically, the whole observed world becomes one point
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» Relationships are naturally being considered in first-order logic (FOL) and in
relational databases (RDBS)

» Let's look at three relational complexities:
= A propositional Bayes net
= A Bayes net with unary relations/predicates (the classical learning scenario)
= A Bayes net with also binary relations/predicates
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|. Propositional Bayes Net

= Nodes in a propositional Bayesian network represent atomic propositions as
Alarm, WatsonCalls, DaughterCalls

Earthquake Burglary

RadioReport
Daughter . @
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e This is a Bayes typically used in machine learning

e A Bayesian network does not only make statements about a single person (Jack) but

about a whole set of entities (all patients); a Bayesian network is a template
e Example. If we have no evidence for any descendent:
Vz. P(bronchitis(z) = j|smoker(z) = k) = Oppon j 1
where j € {0, 1}

e Jack, John, ... are constants (e.g., objects, entities)
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e z is a variable that represents constants

Has branchitis

e V (for all) is a quantifier; the other one is 3 (there is)



Predicates, Atoms, Ground Atoms, Relations and
Tuples

hasTBC(), hasCancer(), positiveXray() are examples of predicates that map the

arguments to true or false

hasTBC(z), hasCancer(z), positiveXray(z) are atoms (predicates applied to argu-
ments). They correspond to nodes (random variables) in the template Bayes net;

thus, smoker(x) would be the node X ¢,oker in the Bayes template net with variables

X

hasTBC(Jack), hasCancer(Jack), positiveXray(Jack) are ground atoms (predicates
with only constants (objects) as arguments). They correspond to nodes in the ground
Bayes net, which is a propositional Bayes net. Thus, smoker(Jack) would be the node

Xsmoker(Jack) in the ground Bayes net

Predicate and ground atom versus relation and tuple: A relation is a table that
contains all true ground atoms as tuples for a given predicate in a domain (in a

(possible) world); typically predicates and relations have the same name
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P(hasLC(z) | smoker(z))

Has bronchitis

= Here is where the Bayes net is:
= On the schema level

John Jack Mary Jack Jack John John
Mary John Mary Mary Jack
Mary
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= We can display the data as a matrix

» Possible World: truth assignments to all possible ground atoms (as defined by
the relation tables or the design matrix) :

The truth values of those
e X > ground atoms
heed (here the actual matrix
entries (0/1))

-

All possible ground atoms
(all possible matrix
entries)

o O O
o O L Bk
o o O
o O Lk O
o O L Bk
o O O
o O L O

Page 46 September 2014 2nd MLPM Summer School 2014-09-15



Template and Ground Bayes Net

» The real thing is the ground Bayes net

» The template Bayes net is a template which specifies the probabilistic
dependencies in the ground Bayes net:

Wisit to Asia?
Has tuberculosis

Wisitto Asia?

Has tuberculosis Has lung cancer
; Tuberculosis or cancer
TilErEEes 6 BEREED Tuberculosis or cancer
» Fositive X-ray?
Positive ¥-ray? Dyspnoea? Fositive x-ray? Dyspnoea? -
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Visitto Asia?
Has tuberculosis

Has bronchitis

Has bronchitis

[1]

Dyspno



e Binary predicates represent relationships between entities:
likes(z, y), knows(z,y), fatherOf(z, y), ...
In the convention we are using the first argument is the subject and the second one

the object

e Again: = is the set of all ground atoms that can be formed by all known constants and

all predicates. But note that atoms can now have two arguments, e.g., fatherOf(John,

Jack)
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P(hasLC(z) | smoker(z),3y. fatherOf (y, z) A hasLC(y))

| {

John Jack Mary Jack John  Jack
Mary John
Mary

» Note that there is a loop on the template level but not on the level of the ground
atoms/ground Bayes net, since Jack cannot be his own father
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P(hasLC(z) | smoker(z), fatherHasLC(z))

Has tuberculosis

Wisit to Asia?

Tuberculosis or cancer

Positive X-ray?

Has lung cancer

Wisit to Asia?

Has tuberculosis

Positive X-ray?

=
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Has hronchitis

fatherOf

Wigit to Asia?

Has tuberculosis Has lung cancer
Tuberculosis or cancer

Fositive X-ray?

Has lung cancer

Tuberculosis or cancer

Has hronchitis

v

Has bronchitis

_
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» Recall that the unary ground atoms can nicely be represented as a matrix

» The binary ground atoms can be represented as a 3-way tensor (set of
matrices)

| John Jack_Mary

-

- :

John N
Jack N 0 0
Mary §6 0 0
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e Alternatively we write a ground atom as a <subject, predicate, object> triple, for
example fatherOf(John, Jack) becomes <Jack, fatherOf, John> and form a graph

where entities are nodes and a triple is represented as a directed link between subject

and object. Known true ground atoms are entered as links in the graph, where the

link is labelled by the predicate

e The resulting graph is called a triple graph. Knowledge graphs (DBpedia, Yago, Free-

base, Google Knowledge Graph) are special triple graphs. Another example is the RDF

(resource description framework) graph used in the linked open data (LOD) cloud

loves(Jack, Mary)

istEin

istEin

likes(Jack, Mary
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Specifying Dependencies
= Again: Each ground atom must appear exactly once on the left side of
a conditional probability (or unconditional, in the case of no parents)

» (subsets of) FOL provides powerful means to derive meaningful views
to be used as parent nodes:

Datalog (a subset of FOL) can efficiently be executed in relational
databases

P(hasLC(z) | smoker(z),3y. fatherOf (y, z) A hasLC(y))
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e What should be the parents? Examples:

e youngAge(z)

e fatherOf(John. z)
e dy.friendOf(y, z)

e dy.father(y, z) A smoker(y)

Page 54
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Vz.P(smoker(z)|?777)
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e What should be the parent nodes?

Vz Vy.P(likes(z,y)|?777)

e youngAge(z), youngAge(y) ...
e knows(z,vy)

o .like(z.t)like(y,t)
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= “Born in Paris” can predict “Lives in France”

P(livesin(z, France)|bornin(z, Paris))

= But do we need to learn this for all cities and all countries?

P
’,fﬁveﬂn
- 2?7

Jivesin(Mar
~France
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P(livesin(z, y) | 3t.bornin(z,t) A partOf (t, y))

b ZrtOf(Ma
ance)
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e [f all dependencies can be defined on a template level, then the joint probability
distribution or likelihood is

L= =) = H Ppredicate(X)(lear(X))
Xe=
where predicate(X') returns the predicate of the ground atom represented by X . The
important fact is that the conditional probability only depends on the predicate

o Let 044 j 1 @gain be defined as

gpredzpredicate()(),j,k = P(X = jlpar(X) = k)

and the likelihood function can be written as

N .
e pred,j,k
L= 1] o

pred.j.k
with the constraint that Vpred., i, k : Zj Hpred,j,k: = 1.8 < Hpred,j,ﬁ:: L |

e NN,

pred.j.k IS the number of times that ground atoms with predicate pred are in state
7 and their parent nodes are in state k
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e Recall that inference might propagate information in the whole ground Bayes net

e Exact inference is typically not feasible

e Usually, some form of approximate inference is used (loopy belief propagation, MCMC,

mean field inference)
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= The world should be complete (that's why it is called the world)
= In reality: The world is part of a greater world
= States of ground atoms are missing
= If missing at random, this can be handles by some form of EM.
= Often missing is treated as negative evidence (0) in training (closed-
world assumption) and one can learn with a complete data set

-

o O v K
O O L Bk
o v O K
O O L, O
o O W K
o O O
o O L O
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Missing Information: Entities

A test entity (e.g., new patient) belonging to the same world introduces
new ground atoms.

In principal one would need to retrain the whole model but there

are efficient approximations by applying learned templates also to
the new entity

A more severe problem is how the training data was generated.
Example: if | want to study social interactions between students using a
relational model, it makes more sense to study all 10000 students from
one university than it would be to study 10000 randomly chosen
students from the whole US
|deally one would want to have information on all entities in an
Isolated community
Sampling issues (random sampling, link following sampling, ...) are
an important issue in social network analysis, in general
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Missing Information: Predicates / Relations

» The logical expressions on the right of the conditioning side can be though of as defining
new predicates/relations

P(hasLC(z) | smoker(z),3y. fatherOf (y, z) A hasLC(y))

P(hasLC (z) | smoker (z), fatherOfha sLC (z))

fatherOfHasLC

(z) = 3dy.fatherOf (y, z) AhasLC(y)

new predicate!

= A cluster analysis or a factor analysis can derive unary predicates (predicate invention)
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The World is a Little Bit More Complex

1. Type constraints are typically reliable and can reduce the number of ground
atoms dramatically

E.g.: only persons can legally get married

2. Subclass hierarchies are typically reliable (a dog is a mammal is a vertebrate
Is an animal ... )

Similarly: sameAs, partOf

One solution: materialization (add ground atoms that can be derived from
background knowledge to the database)

3. Alarge mouse is different from a large planet. An easy solution: instead of
just having the predicate large, one might want to introduce the predicates
largeRodent and largePlanet

4. Sometimes a good option is to learn several conditional probabilities for a
predicate and then use a combination scheme (e.g., noisy-or)
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= A model is trained in a hospital in Paris
= \We want to apply it to a hospital in Nantes

» Besides the usual problems (different population, ..) this should be possible if
the Bayesian templates do not refer to entities (constants) which only make
sense in Paris (e.g., a particular physician)

Page 64 September 2014 2nd MLPM Summer School 2014-09-15



= [f I only know that the new object “dksdjf” is a dog, the model can infer
default knowledge about “dksdjf” (typical dog properties)
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e With complete data, maximum likelihood learning can be straightforward

e With missing information, we need to rely on some form of an EM algorithm which
is typically based on approximate inference (loopy belief, MCMC, Gibbs, mean field);

note that for the E-step, we might need to estimate high-dimensional distributions!
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e [n addition to the usual issues in structural learning, we are faced with the problem of

searching for interesting views (aggregates, logical expressions)

e The ILP (Inductive Logic Programming) community has developed a number of inte-

resting techniques (e.g., FOIL, Claudian) for deriving interesting views

e T[he ground Bayes net is not allowed to have directed loops. A sufficient condition is

that the Bayes net on the template level does not have directed loops
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Company Domain

L. Getoor, N.
Friedman, D.
Koller, A. Pfeffer

Structure learning:

» Company domain — a dataset of company and company officers obtained from Security
and Exchange Commission (SEC) data

» The dataset includes information, gathered over a five year period, about companies,
corporate officers in the companies, and the role that the person plays in the company

» For testing, the following classes and table sizes were used: Company (20,000),
Person (40,000), and Role (120,000)
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TB Domain Stram

< \

% infected

ageatdx
Pat l&ﬂt smrpos dlsease site

transmlt
Subcase -
closecont

Fig. 1.7. The PRM structure for the TB domain.

Structure learning:

Contact

I

BlDSECDI"It

L. Getoor, N.
Friedman, D.

Koller, A. Pfeffer

= Tuberculosis patient domain — drawn from a database of epidemiological data for 1300 patients from

the SF tuberculosis (TB) clinic, and their 2300 contacts

» Relational dependencies, along with other interesting dependencies, were discovered: there is a
dependence between the patient’s HIV result and whether he transmits the disease to a contact; there
is a correlation between the ethnicity of the patient and the number of patients infected by the strain
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Conclusions

Bayes Nets work well in relational learning if there is prior knowledge about
possible candidates for relational dependencies

Problem: it is difficult to avoid loops in the ground Bayes net with symmetric
relations such as friendOf

Problem: as always in Bayes nets, one needs to define a complete system, i.e.,
conditional probabilities for each node in the ground Bayes net. This can be
very demanding

Both problems can be solved by Markov logic networks (MLNS)!
Both Bayes nets and Markov nets are not " off-the-shelf” methods. Of the shelf
methods can be used if there is no or only little prior knowledge about relational

interactions; relational mixture models (e.g., the IHRM) and relational factor
models (e.g., RESCAL) are better models in this situation
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ll. Markov Networks for Relational
Learning

Volker Tresp

Siemens Corporate Technology
Ludwig Maximilian University of Munich

Page 72 September 2014 2nd MLPM Summer School 2014-09-15



Introduction

= Markov nets are another way of modeling multivariate distributions

= Typically they are better suited for modeling symmetric interactions (e.g.,
friendOf); no concern about directed loops!

= Another advantage is that they do not need to be complete: “Just model what
you know about, the rest is filled in with maximum entropy”

» Disadvantages:

Maximum likelihood learning with complete data is already non-trivial
No causal interpretation
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From a Bayes Net to a Markov Net

= A ground relational Bayes net specifies a probability distribution in the form

L=P@E=x)=]]P(X|par(X))= []Om" je{ol

XeE pred, j,k

= Here X stands for a ground atom and 9 00k IS the probability that a
ground atom with pred=predicate(X) is in state ] given that its parents are in
state k (see previous lecture); predicate(X) returns the predicate of the ground
atom X

= Note that this is also the definition of the complete data likelihood
= We can write the complete data likelihood in exponential form

L = EXpZ |Og P(X | par(x)) EXp Z N pred, j,k |Og eprEd,j,k

pred, j,k
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* In learning, one would need to enforce 0<6,_ ., ., <1 ngred’j’k —1
= One can parameterize J

0 = expw

pred, j,k pred, j,k

1
L = eXp prred,j,kNpred,j,k

Hpred,kzpred,k pred, j,k

N
yA pred,k = (eXp Wpred , =Lk + eXp Wpred , =0,k )

= Now the model is properly normalized for any parameter values

Page 75 September 2014 2nd MLPM Summer School 2014-09-15



Markov Logic Network (MLN)

* Recall that N o ;

Is the number of times that in the data the logical formula

(predicate(X) = pred ) A (X = j) A(par(X) =k)

IS true

* [n MLN one can use any FOL formula Fi (not just the ones derived from
Bayes nets)

= MLN does not require local normalization, i.e. an interpretation of the terms as
local conditional probabilities; it requires global normalization

= MLN does not require a specific number of formulae
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= For an MLN model, we get

1

P(E=x)=L= S

epoWiNi(X)

where Ni (X) is the number of true groundings of formula Fi
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Formulae with only Unary Predicates

.- Example: F. : Vz.smoker(z) A hasB(z)

* Then Ni (X) Is the number of times that in the set of patients, a patient is a
smoker and has bronchitis:

smoker(Jack) A hasB(Jack),
smoker(Mary) A hasB(Mary),...

= Note that, in contrast to deterministic logic, there is no problem in MLN if a
formula is sometimes false. W, corresponds to the degree that formula F
IS supported in the training data
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Formulae with Binary Predicates

= Nothing really new
= Example:

F 1 Vz.hasLC(z) A 3y. fatherOf (y, z) A hasLC(y)

= N, (X) is the number of times that in the set of patients, a patient has lung
cancer and her/his father has lung cancer

hasLC(Jack) A fatherOf (John, Jack) A hasLC(John),
hasLC(Mary) A fatherOf (Jim, Mary) A hasLC(Jim),...
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Comments

+ We do not have to worry any more about directed loops!

+ We do not have to worry anymore about completeness! There can be any
number of formulae (from none to more than there are ground atoms)

Comment: All distributions with the same exponent have the same probability
(maximum entropy principle). Example: with no formula each configuration of
the node states has the same probability! The marginal probability of each
node being in state 1 is then 0.5

- There is no interpretation of a local conditional distribution (no causal
interpretation)

- The partition function is problematic in learning
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One can generate a graphical representation where the random variables are
represented as nodes and all nodes in a ground formula are cliques (fully
connected subnets; links are undirected)

7
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Same techniques as in Bayesian models (MCMC, Gibbs, loopy belief,
mean field)
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» Recall that in Bayesian nets, parameter learning with complete data
was trivial

* In MLNs parameter learning is difficult due to the global normalization
constant which is a sum over all states

= Typical approach: closed-world assumption and optimization of a
pseudo-likelihood
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= We do not have to worry about directed loops or parameter constraints

= Formulae are derived from ILP techniques (FOIL, Claudian)
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Conclusions

» Highly recommended reading:

Matthew Richardson and Pedro Domingos. Markov logic networks.
Machine Learning, 2006

» Great software support: Alchemy

» Highly popular in logics community

» Success sort of depends on good hand-crafted features

= Sometimes structural learning finds good features automatically
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l1l. Mixture Models for Relational
Learning

Volker Tresp

Siemens Corporate Technology
Ludwig Maximilian University of Munich

Page 86 September 2014 2nd MLPM Summer School 2014-09-15



Introduction

We have discussed generalizations of Bayes nets towards relational domains

= We have discussed generalizations of Markov nets towards relational
domains

= Both perform well if there is good prior knowledge available about relational
dependencies, but both approaches are not as suitable as off-the-shelf
methods

= Here we discuss generalizations of statistical mixture models towards
relational domains

Suitable as off-the-shelf method
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e With each entity (data point) a latent discrete variable H is associated. For a given

data point, H is in a particular state, but this state is unknown; it is not recorded in
the data

e All observable random variables are children of the latent variable. The probability

distribution for a random variable X is then

P(X;=j)=) P(H=h)P(X;=j|H = h)
h

e Here 5 € {0, 1}. An advantage is the great simplicity of the model: no need to think

about rules, conditional independencies, loops, or global partition functions
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= Assumption: H represents latent information that can explain all visible
attributes

» This is a Bayes net (only that H is unknown)
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e let's assume a multinomial model for the latent variable

P(H=h)=mr, with0<r,<land ) rp,=1
h

e We are interested in binary observable variables with a Bernoulli distribution, with

P(X;=1H=h) =0;}, with0<6;,<1

e Since this is a Bayes net, it is easy to write the complete-data maximum likelihood

solution as

_Np 5 Nij=1h

-

Kp

N Y=y N

ij=1,h T Nij=0n
Here, N is the number of data points, [N}, is the number of times that in the data the
latent variable is in state h. N; j_1 j, is the number of times that the latent variable

is in state h and X; = 1. N; ;—0 j, is the number of times that the latent variable
is in state h and X; = O
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e Due to the latent variables, we have to use expected counts, i.e.,

N

E(Ny) = Z P(H = h|{X; = jsﬁf}ﬂil)
J=1

E(Nij=1,n) = Z B =l Ky = ji,i’}gir:l)
Ugri=1

E(Ni,j:[},h) — Z P(H = hl[{Xy = ji,i’}ﬂil)
l:31,;=0
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e Nothing changes, except for the interpretation. Let upred be a generic unary predicate

o With P(upred(z) = 1|H = h) = 0,,,¢q., We get

Plupredlz) = 1) = ZP(H = h)P(upred(z) = 1|H = h)
h
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e We maintain that each entity has an associated latent discrete variable

e But now a ground atom depends on the state of the latent variables of both involved
entities:

P(bpred(z,y) = 1|Hy = hy, Hy = hy) = pr'red,hz,hy

® bpred stands for a binary predicate
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= Assumption: H represents latent information that can explain the binary ground
atoms

Jack Mary

H H

likes(Jack, Mary)
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e Since this is a Bayes net, it is easy to write the complete-data maximum likelihood

solution as

" Np,
=5

~ Nupred,j=1,h

0. =
pred,h
Nupred,j=1,h o Nupred,j=0,h

Nopred,j=1,hs.hy

gb —
pred.hz.h
Y Nppred,j=1,hz.hy T Nopred,j=0,h,,hy

e Here, N is the number of entities under consideration, Ny, is the number of times
that the latent variable is in state A, in all entities. N,,,,,..q =1  is the number of
times that upred(z) is true when the latent variable associated with z is in state h.
Nipred,j=1,hz,hy 1S the number of times that bpred(z,y) is true when the latent
variable associated with z is in state - and the latent variable associated with v is

in state hy.
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e Since H is latent, we have to use expected counts, i.e.,

E(N,) = ZP(HZ = h|=)

E(Nupred,j=1,h) — Z P(H- = h|=Z)
z.upred(z)=1

E(Nppred,j=1,hz,hy) = Z P(H; = hz, Hy = hy|=)
2y bpred(z,y)=1

e The technical difficulty is that the latent variables are conditioned on the whole world

— =, i.e., on all training data
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Free flow of information:

=The parent nodes (here, the H-nodes) block information when they are known but permit the flow of
information when they are unknown (the case here)

=Collider nodes (here, the binary ground atoms) block information when they are unknown but permit the
flow of information when they are known (the case here with a closed-world assumption)

Jack H Mary H

likes(Jack, likes(Jack, likes(Mary, likes(Mary, likes(John, likes(John,
Mary) John) Jack) John) Mary) Jack)

John
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Infinite Hidden Relational Model / Infinite Relational
Model

» Exact EM is not suitable due to the expensive E-step
= Typically, Gibbs sampling or mean field is employed to approximate the E-step
» |n a fully Bayesian model we apply a Dirichlet prior on

= We can make the transition to infinitely many states and obtain Dirichlet
process mixture models in form of the IHRM/IRM models: these are infinite
models (nonparametric Bayesian models) in which the number of hidden states
IS determined in the sampling process!

» |n Gibbs sampling, the parameters 9 can be integrated out
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Inference

= Note that the latent variables are all unknown

= As just discussed, there is global propagation of information in the
network

» Thus, the model can use information about the context of an atom, e.qg.,
about a friend's friend, without explicit aggregation (collective learning)

= Approximate inference is used (Gibbs sampling, mean field)
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» There is no need for structural learning!

» The structure is defined by the relational model
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Gene Interaction and Gene Function

= Tasks
Cluster analysis

Prediction of gene functions given information on the gene level and the protein level,
as well as information on interactions between the genes

= Attribute data: CYGD (Comprehensive Yeast Genome Database) from MIPS (Munich
Information Center for Protein Sequences)

1000 Genes
Attributes: Chromosome, Motif, Essential, Class, Phenotype, Complex, Function

» Interaction data: DIP (data base of interacting proteins)
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IHRM Model

motif e & 8 @

<> :
)
a0 :
Ql@ﬁf complex } © O @

For a gene one or more phenotypes : :
Task: Genes (1243) have one or more (11)[1-6] are observed in the A gene might contain one or more

functions (14)[1-4] (cell growth, cell characteristic motifs (351) [1-6]
organization, transport, ... ) to be (information about the amino acid
predicted; 862 for genes for sequence of the protein)

organism
How the expression of the gene can
complex with others to form a larger

training, 381 for testing protein (56)[1-3] Gene attributes are: essential (an

Genes might interact with one another organism with a mutation can

The protein coded by the gene might survive?), which chromosome

belong to one or more structural
categories (24) [1-2]




Cluster Structure

= Some gene clusters: the genes in the same cluster have dense
Interactions; but the genes in the different clusters have rare
interactions

protein processing (protealytic)
proteasomal degradation (Ubiquitin/proteasomal pathusay) Node. gene

Link: Interaction

Color: cluster.

cytoskeleton—dependent transport
actin cytoskeleton
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Relevance of Attributes and Relationships

Page 104

The importance of a variety of relationships in function

prediction of genes

Relationships Prediction Accuracy (%) Importance
(without the relationship)

Complex 91.13 197
Interaction 92.14 100
Structural Category 92.61 55
Phenotype 92.71 45
Attributes of Gene 93.08 10
Motif 93.12 6
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Conclusions

» Relational mixture models have many attractive properties

» They are useful off-the shelf approaches

= Good results on some problems

= Obtaining convergence can be tricky

* |n our opinion, the best off-the-shelf approaches with great scalability and great
predictive results are based on factorization approaches, e.g., the RESCAL
model described in the following lecture
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V. Factor Models for Relational
Learning

Volker Tresp

Siemens Corporate Technology
Ludwig Maximilian University of Munich
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= Here we discuss generalizations of statistical factor models towards
relational domains

= Suitable as off-the-shelf methods
= Highly scalable and excellent predictive performance
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= \We assume for each random variable a model of the form

I:)(>(I,i | fl,i)

XI i random variable with index i in data point with index |

» The most important special cases are a Bernoulli model and a Gaussian model

Bernoulli: P(X,; | f,;)= 1, 0<f,.<1

Gauss: P(X,;| f,;) o« N(f,;,07)
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Classical Factor Model

= \We assume for each random variable a model of the form

f.=h'a

g, . r —dimensional vector of latent factors specific to data point |
w. : r —dimensional latent vector specific to random variable |

= Note that both the dimension-specific and the data point specific factors are
unknown and have to be learned from data

» The solution is not unique; one possible solution can be computed via singular
value decomposition (SVD)
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Factor Model for Unary Relations

= \WWe assume for each random variable a model of the form
T
P(upred (Z) | fupred ,z) 1:upred Z Vupred aZ

a, : r —dimensional vector of latent factors that describe entity z

v . . —dimensional latent vector specific to upred

upred
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Matrix Algebra

» Recall that we can write the possible world unary ground atoms as a matrix

|\/| IS a matrix where

(M )z,upred — upred(z)

— IS a matrix with the same dimension
D(M | F) IS an element-wise conditional probability
_ T : , -
- =V'A describes the matrix decomposition
\V/ IS a matrix with
(V )upred,k — Vupred,k
A IS a matrix that contains the latent
entity factors with
(A)z,k — az,k
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Factor Model for Binary Relations

= \We assume for each random variable a model of the form

P(bpred(21 y) | 1:bpred,z,y)

= \We can now assume that we should consider all interactions between the
latent representations of the two involved entities, and one models

fbpred,z,y = Z,j Z,k Whpred  j k&7, Ay
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Tensor Algebra

» Recall that we can write the possible world binary ground atoms as a tensor

X IS a three-way tensor where

(X)z,y,bpred = bprEd(Z’ y)

— Is a tensor with the same dimensions
D(X | F) IS an element-wise conditional probability
- —R X, sz A Describes the tensor decomposition

R IS the core tensor with

(R)j,k,bpred — Wbpred,j,k
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Free flow of information:

=The parent nodes (here, the a-nodes) block information when they are known but permit the flow of
information when they are unknown (the case here)

=Collider nodes (here, the binary ground atoms) block information when they are unknown but permit the
flow of information when they are known (the case here with a closed-world assumption)

Jack

Page 115

Agack 17+ Ajack.s Mary

likes(Jack, likes(Jack, likes(Mary, likes(Mary,
Mary) John) Jack) John)

a

a

Mary,1?*** **Mary,s

—

likes(John, likes(John,
Mary) Jack)

John ajohn,l, ...d

John,s
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RESCAL: Cost Functions and Parameter Learning

» The model | have just described is known as the RESCAL model

Nickel, Volker Tresp, and Hans-Peter Kriegel. A Three-Way Model for
Collective Learning on Multi-Relational Data. In Proceedings of the 28th
International Conference on Machine Learning, 2011

» The cost function and the parameter optimization are described in the next
lecture on ,Machine Learning with Knowledge Graphs”

= Note that the A matrix is shared between the tensor model for the binary
relations and the matrix model for the unary relations
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= After learning the ground atoms are all independent
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» As in the IHRM/IRM, there is no structure learning
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» The RESCAL model has excellent performance and scales well to large data
sets

» For mode details see also the following lecture on Machine Learning with
Knowledge Graphs
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V. Machine Learning with
Knowledge Graphs

Volker Tresp

Siemens Corporate Technology
Ludwig Maximilian University of Munich

Joint work with Maximilian Nickel
With contributions from Xueyan Jiang and Denis Krompass
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Prelude

= My background is in Machine Learning and | got involved in Semantic
Web projects maybe 6 years ago

» earning about the Semantic Web clarified my thinking about many
things dramatically

: : IRMLeS 2009: 1st ESWC
MV ¢, ¢ %4 Workshop on Inductive
Reasoning and Machine
* Learning on the Semantic

» Immediate love affaire with RDF Wep
Sections = =
] ; e Organization
Nothing is ever wrong
Submission Details
. . TR Organizing Committee
No contradictions Worksion E-ooeen . . .
Invited speakers « Claudia d’Amato, University of Bari, ltaly
Accepted papers  Nicola Fanizzi, University of Bari, ltaly
Photos « Marko Grobelnik, Jozef Stefan Institute, Slovenia
hews « Agnieszka tawrynowicz, Poznan University of Technology, Poland
Sz « Vojtéch Svatek, University of Economics, Prague, Czech Republic
days since Program Committee
Workshop day
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= Why Machine Learning needs Knowledge Graphs
= Statistical Relational Learning

» | earning with the YAGO Knowledge Graph

= Towards Relevant Use Cases
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Machine Learning versus Statistics versus Data Mining

= Statistics focuses on interpretable parameters

= Data mining focuses on the discovery of meaningful patterns

= Machine Learning focuses on prediction accuracy
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Classification is the work horse of
machine learning

» Predict class memberships for many
objects

= Very powerful
= Surprisingly general
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Predicting class k for input Z, P(x“(z,)=1) « f*(z)

M
Fixed basis functions f*(z,) = Zwrﬁbm (z,) A Really the same
m=1 \ things; deep

N learners would
Kernels f*(z,) = Z:Vri;k(zI ,Z,)  call the shallow
n=1
Neural Networks f*(z,) = NN gee (2)

/

= 10 layers with 1000 neurons per layer
= Currently the hottest thing!
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Deep Learning Neural Networks

Scientists See Promise in Deep-Learning Programs

Google, Microsoft, Facebook,
Baidu are all investing heaviliy
in deep learning

A voice recognition program translated a speech given by Richard F. Rashid, Mi
Chinese
Chinese.

Using an artificial intelligence technique inspired by theori
how the brain recognizes patterns, technology companies

reporting startling gains in fields as diverse as computer vi
speech recognition and the identification of promising new

for designing drugs.

The advances have led to w

REEEFI RN enthusiasm among researc

P e design software to perform human S PrINT

Us on Social activities like seeing, listening and E sinGLE PasE
{EIEdj.ﬂ ) thinking. They offer the promise of B meramTs
fnnT“.Ej]]EElm FHC8 ESUTI  machines that converse with humans

+ Stience Repocters and perform tasks like driving cars

and Editors on Twitter and working in factories, raising the
specter of automated robots that could

replace human workers.

Like the science desk on
Facebook.

High-level
linguistic representations
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Detecting Cats in Images

= Best performing in detecting cats in images and videos (Andrew NQ)

Ehe New JJork Times Business Day

Technology

WORLD | U.5. | N.Y. / REGION | BUSINESS | TECHNOLOGY | SCIENCE | HEALTH | SPORTS | OPINION | .

1] Office 365 Starting at only
$6.99/month.

How Many Computers to Identify a Cat? 16,000

o " -~ o
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= A deep learning network sees more cats than any child but is not as good at
this task

= Deep Learning community: we need better unsupervised learning to pre-
structure the network

Image of cats

= Maybe we would say: we need background knowledge
= Also: we do not just want to detect cats!
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Predict all classes: , This is a cat!* ,This is a dog!*
»This is a house!* ...

Recognize specific entities: , This my cat Max!“
[In our experiments 107] Images of cats

Predict all attributes: ,Max is evil!“

Predict all relationships: ,Max likes Mary!*
[In our experiments 104] [ #of synapses]
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Vision

,YOU must be president Obama!*
~-How is your wife Michelle?*
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= \We need to know about the entities, attributes and classes in the world, and
the various relationships that do or might exist between those

» We need ontologies!
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Biomedical Ontologies

International Statistical Classification of Diseases and Related Health Problems (ICD)
» Used extensively in billing
SNOMED Clinical Terms (SNOMED CT)

» A systematically organized computer processable collection of medical terms providing codes, terms,
synonyms and definitions used in clinical documentation and reporting.

= Application: EHR
RadLex

» Unified language of radiology terms for standardized indexing and retrieval of radiology information
resources

Open Biomedical Ontologies (OBO)
= Controlled vocabularies for shared use across different biological and medical domains
» Gene Ontology (GO) is a part (genes and gene products)

Example GO term [adit]

id: F0:0000016

name : lactase activity

namespace: molecular function

"Catalysis of the reaction: lactose + H20 = D-glucose + D-galactose.” [EC:3.2.1.108]
"lactase-phlorizin hydrolase activity"™ BROAD [EC:3.2.1.108]

"lactose galactohydrolase activity"™ EXACT [EC:3.2.1.108]

EC:3.2.1.108

MetaCyc:LACTASE-RXN

Reactome:20536

Z0:0004553 ! hydrolase activity, hydrolyzing O-glycosyl compounds

the Gene Ontology
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For the First Time there Exist Sizable General
Ontologies: DBpedia, YAGO, Freebase, Knowledge
Graph

*,
*s

ol s
unterklasseVon unterklasseVon unterklasseVon
unterklasseVon
Staat Stadt Physiker Bicloge

istEin istEin istEin

liegtin eborenin eboren
[ eutschiand 2" fUim & [Aben Einstein |2 1879
bedm.V ‘wgmm

[ "Albert Einstein” | | "Dr. Einstein® |

unlarklassa\fy / “~. unterklasseVon
-

0%8"0 | Auer, Bizer, Kobilarov, Lehmann, Cyganiak, Ives: 2007 |

DBpedia is a community effort to extract structured information from Wikipedia
About / and to make this information available on the Web. DBpedia allows you to ask
News sophisticated queries against Wikipedia, and to link other data sets on the
Web to Wikipedia data.

Datasets

| Suchanek, Kasneci, Weikum: 2007 |

~ Freebase

A community-curated database of well-known people, places; and

Schema Queries Apps Loads Review Tasks Users.

Music music 27 | 187M

Books /book 6M | 15M

Media 'media_common 5M 15M

People maaale 3M AT

N Bollacker, Evans, Paritosh, Sturge, Taylor, 2008 | * *

Location flocation M 18m L

Business M 3m

Fictional Universes 923k | 1M = t
The Knowledge Graph [
Biology biology 630K  4m & reaktnroughs [
Sports 459K | 4m 3 . ‘ ] ;
Awards 340K | 5M G -

Education Facts 242 | 3m

Government 2 4 6 2 4 9 3 6 9 3 T - 4 - 148K 921K

Soccer 3 - 2 ; o 143K | 912K
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[ Entitat
untarldnssavy / unterklasseVon

unterklasseVon
unterklasseVon

L
*s

- L
e
+ s

.

| wissenschatier |

unterklasseVon unterklasseVon

| Physiker | | Biologe |

istEin

istEin

neborenin

Albert Einstein

bedeute

In english

‘wamut

| "albert Einstein” | | "Dr. Einstein" |

» Doglis an animal

# Catlis acat

» Cats are animals

¢ Zoos host animals
» Zoo1 hosts the Cat2

. RDF special terms {_ RDFS special terms )

RDF/turtle
EPREFIX rdf: <http://www.Ww3.o0rg/1998/02/22-rdf-syntax-nsf> .
EPREFIX rdf=s: <hcop: ffwww.W3.0rg/ 200001/ rdf-=schema$> .
BEPREFIX ex: <http:/f/fexample.org/> .
EPREFIX zoo: <http://example.org/zo0/> .
ex:dogl rdf:type ex:animal
ex:catcl rdf : cype EXIcat
ex:cat rdfs:=zublflass0f ex:animal
zoothost rdfs:range exranimal
ex:zaol zoo:host ex:cat?
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» Linked Open Data (LOD) and large ontologies like DBpedia, Yago, Knowledge Graph are graph-
based knowledge representations using light-weight ontologies, and are accessible to machine

learners

» They are all triple oriented and more or less follow the RDF standard

= RDF: Resource Description Framework @\

SSSSS

- MDB.
.I
NG
SN
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= Why Machine Learning needs Knowledge Graphs
= Statistical Relational Learning

» | earning with the YAGO Knowledge Graph

= Towards Relevant Use Cases
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<ei e €; > true or false?

Pl r.e,)=1)« f(z,)

* So, very simple, we build one classifier for each relation type k
and we are done

- Butwhat is the input  Z, ?

Page 140 September 2014 2nd MLPM Summer School 2014-09-15



features (age, sex, features derived from a neighborhood of the

entity in the environment of the RDF-graph)
A

g T
‘ (1,850, 8; )

k
e, r¢e.) T
é | j/j (aj’l,aj’z,...,aj’r)
Y
k T
X (Zl(l,J)) ZI(l,J) :(ai,l,aj,z,...,ai,r,aj,l,aj,z,...,aj,r)

fz)= YWbo(z)  f(2)=YVKkG@z) | F(2)= NNy (2)

Popular in learning from the
Semantic Web
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Same, but features are treated as latent (unknown) variables

T
‘ (ai,l’aj,Z""’ai,r)

K
e, re.) T
\< | j// (aj’l,aj’z,...,aj’r)
K N T
X (Zl(l,J)) ZI(',J) :(ai’l’aj’z’.o-,ai’r’aj’l,aj’z,.o-,aj’r)
\ )

N
l—unknowns!

fh@)= 3 wib, (2)
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Information flow open

since unknown parents
states d j
Information flow open

X (Z|(. J)) ,(J J)) } since known children

states X" (Zyi.59)
<ei,rk,ej> <ei,rk',ej,>

* Information can globally propagate in the network of random variables

* Thus one can learn that: Jack is rich since the father of his father is rich

Page 143 September 2014 2nd MLPM Summer School 2014-09-15



= But what are good basis functions?
= We need to represent the interactions between all feature components
= Binary interactions

ff (2)) = Zrlzr: W,l,(,tbs,t (/)

s=1 t=1

bs,t(zl) =4,
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r r
k k k
f (ZI) = Z Ws 18 ¢ = aiT Rkaj (Rk )s,t = W
s=1 t=1

= Here, Rk is ar xr matrix

= We can take the matrices for the different relations R, R,,R;,...
on to of each other and obtain the core tensor R

= |n tensor notation: We factorize the tensor X

X <« Rx, Ax, A (X)i,j,k = xk(z,(i,j))
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j-th entity

i-th entity
i-th entity o

k-th relation ©”

&

o
k-th relation

~d1

[ 1, iftriple (i-th entity, k-th relation, j-t-
0, otherwise
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Frobenius norm

argmin [|[X — R x; A X, All” + A4l A|I? + Ag IR’
AR

Probabilistic View

n n m
P(X|AR) = H n I—[P (x,;jk | a?Rkaj)
i=1 j=1 k=1
a, ~ N(O, 0'1?11) Gaussian  Xjjf ~ N(Q?Rkaj, 0-2)!

2
Ry ~ N (0, o) Bernoulli Xk ~ Bernﬂuﬂi(afﬂk a;)
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= Most efficient: Alternating Least Squares (ALS)
= Can exploit data sparsity
= (stochastic gradient descent, ...)

m m -1
A e [Z X, ART + XEAR,,] [Z B, +Cp + Aﬂf]
k=1 k=1

B, = ReATAR;, Cp = R ATAR,

-1
vec (R,) « (ZTZ+ )lRI) Zl vec (X}.)

Z =AQ®A
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RESCAL for Different -arities

.
Unary Relations P(rk (ei )) < VI a; = ka,nai,n

n=1

r r
Binary Relations P(rk (ei : ej )) <« aiT Rkaj = Z Z Rk,nl,nz ai,nlaj,nz
n,=1n,=1

rr r

Ternary Relations P(rk (ei y ej ) e| )) < y y y Rk,nl,nz,ng ai,nlaj,nz a|,n3

In our applications only unary and binary relations are used
The latent entity representation (a-vector) for a given entity is identical in all
relations and thus information can be shared between all relations, as well!
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K-relations
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Scalabilty

Page 151

Time in seconds/Iteration

Time in seconds/Iteration
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Leading Performance in Link prediction on
benchmark data sets

Predicting relationships:
.Max likes Mary*

Kinship: multiple kinship relations between members of the Alyawarra tribe in central Australia (10,790
kinship relationships (facts) between 104 persons over 26 relations)

UMLS: The UMLS data set consists of a small semantic network which is part of the Unified Medical
Language System (UMLS) ontology. 6,752 relationships (facts) between 135 concepts over 49 relations

Nations: The Nations data set describes political interactions of countries between 1950 and 1965 . It
contains information such as military alliances, trade relationships or whether a country maintains an
embassy in a particular country. 2,024 relationships between 14 countries over 56 dyadic relations

Kinships IIMLS r Mations
0,97 0,08 0,08 0,08 :
Lo .o - 0.4 o oo I 0.95 0.95 _ e o 083 gg 084
- EI_E—“I o
0.8 0.E 0.5 0,70
EH 0.6
t._';l . 0.4
0.4
éu.-; 0.4
0.2 0.2 0.2
0.0
e S EE T = g & & F 5
¥ ¥ T ¢ s ¥ 3 & &
& @ & &
o) o

BCTFE: Bayesian clustered tensor factorization; MRC: Multi-View Relational Classification__ . __ __



Recognizing specific entities:

»This my cat Max!*

= 1295 publication records, where each publication is the subject of a relationship to its first author, a
relationship to its title, and a relationship to its publication venue

» Task: identify which authors, entities and venues refer to identical entities

Yoo

hasWVernme hasTitle
T, T

Crbricarion >

I
hagAuthor

AUC-PR
Entity Type Naive Bayes ;g-%yr JE;) C%ﬁp % es} CP  REescar
Publications 0.913 0.915 0.988 0.991  0.991
Authors 0.986 0.987 0.992 0.984 | 0.997
Venue 0.738 0.736 0.807 0.746 | 0.810
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= Why Machine Learning needs Knowledge Graphs
= Statistical Relational Learning

» Learning with the YAGO Knowledge Graph

= Towards Relevant Use Cases
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Yago2 Core Ontology

YAGO2 core ontology

Number of Resources 2.6 million %Qed\?}
Number of Classes 340,000 \c_,oo
Number of Predicates 87 $o\“®
Number of Known Facts 33 million

The tensor has 104 entries!

Siemens — MPII cooperation
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Type Number of entities

- _ - wordnet :person 884,261
wordnet :movie 62,296
Predicting concepts:
Table 3.9.: Link-prediction experiments on YAGOZ2. e e agcat“ g
AUC-PR
wordnet :person wordnet:location wordnet:movie

Random 0.32 0.18 0.06
Setting a) 0.99 1.0 0.75
Setting b) 0.96 0.98 0.51
With attributes - - 0.85

(text attributes)

a) Only those rdf :type triples that include the class C that should be predicted were
removed from the test fold. All other type triples, including subclasses of C, are still

present in the data.

b) All rdf : type triples were deleted in the test fold.
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Predicting concepts/attributes:
.Max is evil”

YAGO Writers
0.96 0.96
type 0.8 |
Emile Zola 0.6 - 051
wasBornln 0.38
0.4 |
Paris
0.2 |
isLocatedIn ... isLocatedIn

0.0

Gt (s D

(a) Collective learning example on Yaco. The (b)Results for link prediction on YaGo2 writers
objective is to learn the correlation between data set over ten-fold cross-validation.

§F £ & g F
¥ 5 AN
& &

France and French Writer from examples
like Emile Zola.
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_ Organizing concepts
Learning a Taxonomy (-> Ontology)

[IMB 2010 benchmark provided by the Ontology Alignment Evaluation

Around 1400 entities of a movie domain

5 distinct top-level concepts

On the top level: every concept is represented by a sufficient number of entities, while e.g. some level
2 movie concepts only include two or three entities and therefore are hard to recognize.

Table 3.10.: F-measure for selected concepts and weighted F-measure for all concepts per
subclass-level

Level 1 Level 2 Level 3

Locations 0.95 City 0.99  Capital 0.99
Films 1.0 Anime 0.67 Director 0.78
Creature 1.0 Character 0.73  Character Creator 0.53
Budget 1.0 Person 1.0 Actor 0.98
Language 1.0 Country  0.80

All 0.982 All 0.852 All 0.947
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L0r 0.962 Kinships Kinships
4
i
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e
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Kinships

Nonnegatve RESCAL (Krompass, Nickel, Tresp)
= sparse solutions with clustering properties
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Extensions: Proofs and Bounds

= Analysis of generalization bounds when order of the tensor match or do

&
not match YOU WANT PROOF?
= Matricization results in a loss of generalization performance I'LL GIVE YOU PROOF!

Maximilian Nickel and Volker Tresp. An Analysis of Tensor Models for
Learning on Structured Data. Proceedings of the ECML/PKDD, 2013

8 . o 0.92 |- -
2
g e o n 0.00 | Fg . O
0.94 e 1 o0 g B i
. I - n D D
o Lo - A T
] iy
L; | s ] 1 0.90 - — .
R S o W 085 g == _ A W |
L 092 | _ +-§ - U
g | A g | 089F -
o = = . A A A H
i ]
EI';I:I | ﬁ SV’D{]} u} ﬁ _ G.Sﬁ I ﬂ — D.SB - ﬂ =
O SVD(2) B e A : 1 |
@ SVD (3) B A | A 0.87 .
0.88 1 — % Tucker 3 (true) 4 o075 & Tucker A 2 A Tucker '
—8— Tucker 4 - O CP (true) A 0.86 " @ RESCAL (true) T
C I i I I | 1 1 1 1 L I | I I |
o oY ¥ o o s oY SRR . S . o A ™ o P WP
Ratio Missing Data Ratio Missing Data Ratio Missing Data
(a) Third-Order Model (b) CP Model (¢) REscar Model
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= Why Machine Learning needs Knowledge Graphs
= Statistical Relational Learning

» | earning with the YAGO Knowledge Graph

» Towards Relevant Use Cases
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Machine Learning with Structured Data and

Ontologies

Within the domain:
= Prediction of triples

Classification (defining type)

Clustering

Taxonomy Learning

Entity Resolution

Visualization

Querying
Who wants to be Trelenas friends

Can be generalized towards more
complex probabilistic queries
(Krompass, Nickel, Tresp, ISWC 2014)

Outside of the domain (new entities):

= Calculate the latent factors for the new
entity

Can do all of the tasks above

Object recognition becomes entity
resolution

= Formulate the new object as a query
Object recognition as a query
Queries can become complex
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% Bundesministerium
filr Wirtschaft
und Technologie

Clinical Data Intelligence

Goals

» Personalized medicine: modeling the patient in her/his full
complexity -> patient specific recommendations SI EM ENS

» Global modeling of the clinical data / clinical decision

V4
processes: clinical ontology (concepts and instances) C H A R | T E
Use CaseS UNIVERSITATSMEDIZIN BERLIN

= All data from all patients

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

= Breast cancer

» Nephrology
= Data from clinical studies

\

Fraunhofer

Challenges
= Ontologies 3 " Deutsches 115
- ent in a dlini 1€ B
[ ] ur ns
Complex relational data (patient in a clinic) _ o | Intelligenz Grmbk
» Representing time; sequential data o
» Decision modeling: decision optimization (confounders, :
causality) Institut }
. -~ dheit
- . ; . FrauenGesundhei
Including unstructured data (reports, images) a\/el"bls (irGe) =
* Including OMICS data _ f
medical language wechnology
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Figure |: Data from 10000 patients were used. We considered 2331 possible diagnoses, 1634
possible procedures, 2721 possible lab results, 209 possible therapies and 281 general patient data.
In total the data contained 5.9 million facts. We predicted the next decision (diagnosis, procedure) as
a function of the information available for each patient. Plotted is the NDCG score (a popular score
for evaluating ranking results [11]) as a function of the information available for each patient (a large
number is desirable). An event corresponds to an instance in time where patient data is recorded.
With increasing information, the prediction improves. We see plots for different approximation
ranks: the highest rank gives best scores which reflects the high degree of data complexity.
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Machine Learning with Images and Ontologies

Linking textual descriptions in radiology reports to
medical images
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Neural Tensor Model (Socher et al.)

K-relations

* Contrastive max-margin

objective functions (similar to

Collobert during pre
» Use Batch SGD

training)

>

» This means that per epoch, one
does not adapt wrt all MxMxK
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triples but only wrt 2xTxC triples

* M: number of entities
* C: tuning parameter; often 10

* K: number of relation types

* T: number of true triples
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RESCAL3
where the polynomials are

k
P(Xi,j o 1| AW, ﬁ) Fact extraction: NER, POS, entity linkage
(map words to entities); complex features to
predict triple from text; combination scheme

ﬁ for all classifiers (Platt scaling to normalize
outputs). Output: probability for a triple
() (AUC=0.927)
\\ M
LN N .
o>
74

replaced by sigmoids

Graph-based prior:

*Path ranking algorithm (AUC=0.884)
*Graph prior (‘RESCAL” variant)
(AUC=0.882)

*Fused: (AUC=0.911)

Il combined:
« (AUC=0.947)

Vi

T Y ak,l Ak, r 7 il ]
subject =i  predicate=k object = ]

br
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Knowledge Graphs

= First time: large general ontologies available
= Useful for solving machine learning tasks

Relational Machine Learning with RESCAL

= Scalable relational learning with very competitive performance
= Collective Learning

= We are working on many improvements/extensions

RESCAL Learning with the YAGO Knowledge Graph
= Experimental results in a number of relational learning tasks

Towards Relevant Use Cases
= Text understanding

= Image understanding

= Clinical data
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