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Immersion and strong immersion

v

f: V(H) — V(G) injective
Yuv € E(H) path Py, connecting f(u) with f(v)

v

Subdivision:
P, internally vertex-disjoint

v

» Immersion:
P, edge-disjoint

» Strong immersion:
P, edge-disjoint and internally disjoint from f(V/(H))
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Immersion and strong immersion of K
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Motivation: Hadwiger and Hajos Conjecture

Hadwiger Conjecture (1943): x(G) < largest clique minor in G
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Motivation: Hadwiger and Hajos Conjecture

Hadwiger Conjecture (1943): x(G) < largest clique minor in G

Hajés Conjecture: x(G) < largest clique subdivision in G
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Motivation: Hadwiger and Hajos Conjecture

Hadwiger Conjecture (1943): x(G) < largest clique minor in G

Hajés Conjecture: x(G) < largest clique subdivision in G

Abu-Khzam & Langston: x(G) < largest clique immersion in G
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Well-Quasi-Ordering

Robertson and Seymour, Graph Minors XXIII. Finite graphs are
well-quasi-ordered for the weak immersion relation.

» The proof uses the full graph minors machinery.

» However, topological obstructions only when cubic vertices ...

B. Mohar Immersion of (di)graphs



Well-Quasi-Ordering

Robertson and Seymour, Graph Minors XXIII. Finite graphs are
well-quasi-ordered for the weak immersion relation.

» The proof uses the full graph minors machinery.
» However, topological obstructions only when cubic vertices ...

» It is essentially a subdivision in the line graph. (This is the
reason why graph minors techniques can be used.)
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Well-Quasi-Ordering

Robertson and Seymour, Graph Minors XXIII. Finite graphs are
well-quasi-ordered for the weak immersion relation.

» The proof uses the full graph minors machinery.
» However, topological obstructions only when cubic vertices ...

» It is essentially a subdivision in the line graph. (This is the
reason why graph minors techniques can be used.)

» Polynomial-time algorithms for H-immersion, O(n"*3), or
membership testing for an immersion-closed family.
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Well-Quasi-Ordering

Robertson and Seymour, Graph Minors XXIII. Finite graphs are
well-quasi-ordered for the weak immersion relation.

» The proof uses the full graph minors machinery.
» However, topological obstructions only when cubic vertices ...

» It is essentially a subdivision in the line graph. (This is the
reason why graph minors techniques can be used.)

» Polynomial-time algorithms for H-immersion, O(n"*3), or
membership testing for an immersion-closed family.

» Some indication about WQO for strong immersions.
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Grid Theorem

Chudnovsky, Dvorédk, Klimosova, Seymour (2014):

For every fixed k, every 4-edge-connected graph of sufficiently large
tree-width contains a k X k grid as a strong immersion.
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Grid Theorem

Chudnovsky, Dvorédk, Klimosova, Seymour (2014):

For every fixed k, every 4-edge-connected graph of sufficiently large
tree-width contains a k X k grid as a strong immersion.

= contains any fixed graph H of maximum degree < 4 as a strong
immersion

(take a drawing of H inside a large grid)
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Kt %im

(instead of parallel edges we may have arbitrary edge-disjoint paths)
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Rough Structure Theorem

Laminar family of edge-cuts: no two of the cuts cross.

Theorem [DMMS / Wollan]

If K¢ £im G = 3 laminar family of edge-cuts, each of size < (t — 1)2
s.t. every block of the resulting vertex partition has at most t — 1
vertices.

(One may consider this as an analogue of having small tree-width.)
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Rough Structure Theorem

Laminar family of edge-cuts: no two of the cuts cross.

Theorem [DMMS / Wollan]

If K¢ £im G = 3 laminar family of edge-cuts, each of size < (t — 1)2
s.t. every block of the resulting vertex partition has at most t — 1
vertices.

(One may consider this as an analogue of having small tree-width.)

This is a rough characterization because a graph with the stated
separation property cannot contain Kj2-immersion.
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Gomgr\6 - Hu Tree

Theorem: VG Jtree H with V(H) = V(G) ond
3 Qe E(HW— Z st.

@ Ve=uveE(H): Ch(c) = Au,+)

ee?P, <

Wy’'=

Vuwe eVG): N v)= rmim Ct(e).
H
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'Pn:o{ o.F the Structure Theorem

d GomorJ—Hu tree
. Remove e"a" w i, C«le)< +-1)?
e If a block witl, 2t vertices Y, Yy, 9V remaig

o (0" edge-Aisjoint paths Aron Y to {4, %3
with Precisely +-1 of them an(,.s.,.J at eacl, v (iz2)
a Ky —immersion by Example 2.
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Some further results

» Abu-Khzam and Langston conjecture is true for x(G) <7
[DeVos et al. 2010]

» (Lescure and Meyniel / DeVos, Kawarabayashi, M., Okamura)
Every (simple) graph of minimum degree at least kK — 1 contains
a Ki-immersion for k <7

» For k > 10 no longer true (Seymour): Ki2 minus E(4K3).
Generalized examples:
Hi, ..., H, D-regular graphs, each with chromatic index D + 1,
where r > 1D(D +1). G complement of H; U--- U H;,
n=|V(G)|. Then §(G)=n— D —1, but G does not contain
K,_p-immersion.
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Some further results

» Abu-Khzam and Langston conjecture is true for x(G) <7
[DeVos et al. 2010]

» (Lescure and Meyniel / DeVos, Kawarabayashi, M., Okamura)
Every (simple) graph of minimum degree at least kK — 1 contains
a Ki-immersion for k <7

» For k > 10 no longer true (Seymour): Ki2 minus E(4K3).
Generalized examples:
Hi, ..., H, D-regular graphs, each with chromatic index D + 1,
where r > 1D(D +1). G complement of H; U--- U H;,
n=|V(G)|. Then §(G)=n— D —1, but G does not contain
K,—p-immersion.

» (DeVos, Dvordk, Fox, McDonald, M., Scheide)
Every simple graph of minimum degree at least 200k contains a
Ki-immersion
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Immersions in digraphs

» Some bad news:
Digraphs are not WQO for immersion relation
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Immersions in digraphs

» Some bad news:
Digraphs are not WQO for immersion relation

» And some good news:
Tournaments are WQO (Chudnovsky and Seymour 2011)

» Eulerian digraphs of (out)degree < 2 are WQO (Thesis of Thor)
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Some more bad news

Complete digraph K,

AR N

i K, K
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Some more bad news

Complete digraph K,

A L\ @
£, R, K

Theorem: For every positive integer k there exists a simple digraph D
with minimum in- and outdegree at least k so that D does not
immerse K2 (and hence does not immerse K3).
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Strong connectivity helps

Strongly k-edge-connected:

D — S is strongly connected VS C E(D) with |S| < k.
Arborescence with root v:

Spanning tree T of D s.t. all edges directed “away” from v
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Strong connectivity helps

Strongly k-edge-connected:

D — S is strongly connected VS C E(D) with |S| < k.
Arborescence with root v:

Spanning tree T of D s.t. all edges directed “away” from v

Edmonds’ Disjoint Arborescence Theorem: vi,..., vy, € V(D) (not
necessarily distinct). Then there exist edge-disjoint arborescences
T1,..., Ty so that T; has root v; if and only if VX C V/(D):

d¥(X)>Ni:vie X,1<i</}.
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Strong connectivity helps

Strongly k-edge-connected:

D — S is strongly connected VS C E(D) with |S| < k.
Arborescence with root v:

Spanning tree T of D s.t. all edges directed “away” from v

Edmonds’ Disjoint Arborescence Theorem: vi,..., vy, € V(D) (not
necessarily distinct). Then there exist edge-disjoint arborescences
T1,..., Ty so that T; has root v; if and only if VX C V/(D):

d¥(X)>Ni:vie X,1<i</}.

Corollary: D strongly t(t — 1)-edge-connected digraph with
|V(D)| >t = D contains an immersion of K.
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Strong connectivity helps

Strongly k-edge-connected:

D — S is strongly connected VS C E(D) with |S| < k.
Arborescence with root v:

Spanning tree T of D s.t. all edges directed “away” from v

Edmonds’ Disjoint Arborescence Theorem: vi,..., vy, € V(D) (not
necessarily distinct). Then there exist edge-disjoint arborescences
T1,..., Ty so that T; has root v; if and only if VX C V/(D):

d¥(X)>Ni:vie X,1<i</}.

Corollary: D strongly t(t — 1)-edge-connected digraph with
|V(D)| >t = D contains an immersion of K.

Theorem: Vt > 3 there exists a simple digraph which is strongly
1t(t — 3)-edge-connected and does not immerse K;.
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Rough Structure — Eulerian Case

Theorem [DMMS] Let D be an Eulerian digraph. If K. Lim D =
3 laminar family of edge-cuts, each of size < 2t(t — 1) s.t. every
block of the resulting vertex partition has at most t — 1 vertices.

This is a rough characterization because a digraph with the stated
separation property cannot contain Kp-immersion.
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Rough Structure — Eulerian Case

Theorem [DMMS] Let D be an Eulerian digraph. If K. Lim D =
3 laminar family of edge-cuts, each of size < 2t(t — 1) s.t. every
block of the resulting vertex partition has at most t — 1 vertices.

This is a rough characterization because a digraph with the stated
separation property cannot contain Kp-immersion.

Proof is based on ancient techniques:
» Gomory-Hu tree on the undirected graph
» Remove edges with p(e) < 2t(t — 1)

» If a part has a block with > t vertices, split off the remaining
vertices (Mader) and apply arborescence theorem
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Eulerian digraphs

Corollary: Every simple Eulerian digraph with minimum degree at
least t(t — 1) contains an immersion of K;.
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Eulerian digraphs

Corollary: Every simple Eulerian digraph with minimum degree at
least t(t — 1) contains an immersion of K;.

The quadratic bound can be strengthened for small values of t as
follows.

Theorem: For t < 4, every simple Eulerian digraph of minimum
degree at least t — 1 contains an immersion of K;.

Open for t = 5.
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