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M. DeVos, Z. Dvǒrák, J. Fox, J. McDonald, D. Scheide)

2015-03-17

B. Mohar Immersion of (di)graphs



Immersion and strong immersion

I f : V (H)→ V (G ) injective

I ∀uv ∈ E (H) path Puv connecting f (u) with f (v)

I Subdivision:
Puv internally vertex-disjoint

I Immersion:
Puv edge-disjoint

I Strong immersion:
Puv edge-disjoint and internally disjoint from f (V (H))
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Immersion and strong immersion of K−5
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Motivation: Hadwiger and Hajós Conjecture

Hadwiger Conjecture (1943): χ(G ) ≤ largest clique minor in G

Hajós Conjecture: χ(G ) ≤ largest clique subdivision in G

Abu-Khzam & Langston: χ(G ) ≤ largest clique immersion in G
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Well-Quasi-Ordering

Robertson and Seymour, Graph Minors XXIII. Finite graphs are
well-quasi-ordered for the weak immersion relation.

I The proof uses the full graph minors machinery.

I However, topological obstructions only when cubic vertices ...

I It is essentially a subdivision in the line graph. (This is the
reason why graph minors techniques can be used.)

I Polynomial-time algorithms for H-immersion, O(nh+3), or
membership testing for an immersion-closed family.

I Some indication about WQO for strong immersions.
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Grid Theorem

Chudnovsky, Dvǒrák, Klimošová, Seymour (2014):

For every fixed k, every 4-edge-connected graph of sufficiently large
tree-width contains a k × k grid as a strong immersion.

⇒ contains any fixed graph H of maximum degree ≤ 4 as a strong
immersion

(take a drawing of H inside a large grid)
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(instead of parallel edges we may have arbitrary edge-disjoint paths)
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Rough Structure Theorem

Laminar family of edge-cuts: no two of the cuts cross.

Theorem [DMMS / Wollan]
If Kt 6≤im G ⇒ ∃ laminar family of edge-cuts, each of size < (t − 1)2

s.t. every block of the resulting vertex partition has at most t − 1
vertices.

(One may consider this as an analogue of having small tree-width.)

This is a rough characterization because a graph with the stated
separation property cannot contain Kt2-immersion.
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Some further results

I Abu-Khzam and Langston conjecture is true for χ(G ) ≤ 7
[DeVos et al. 2010]

I (Lescure and Meyniel / DeVos, Kawarabayashi, M., Okamura)
Every (simple) graph of minimum degree at least k − 1 contains
a Kk -immersion for k ≤ 7

I For k ≥ 10 no longer true (Seymour): K12 minus E (4K3).
Generalized examples:
H1, . . . ,Hr D-regular graphs, each with chromatic index D + 1,
where r > 1

2D(D + 1). G complement of H1 ∪ · · · ∪ Ht ,
n = |V (G )|. Then δ(G ) = n − D − 1, but G does not contain
Kn−D-immersion.

I (DeVos, Dvǒrák, Fox, McDonald, M., Scheide)
Every simple graph of minimum degree at least 200k contains a
Kk -immersion
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Immersions in digraphs

I Some bad news:
Digraphs are not WQO for immersion relation

I And some good news:
Tournaments are WQO (Chudnovsky and Seymour 2011)

I Eulerian digraphs of (out)degree ≤ 2 are WQO (Thesis of Thor)

B. Mohar Immersion of (di)graphs



Immersions in digraphs

I Some bad news:
Digraphs are not WQO for immersion relation

I And some good news:
Tournaments are WQO (Chudnovsky and Seymour 2011)

I Eulerian digraphs of (out)degree ≤ 2 are WQO (Thesis of Thor)

B. Mohar Immersion of (di)graphs



Some more bad news

Complete digraph ~Kn

   Unfiled Notes Page 1    

Theorem: For every positive integer k there exists a simple digraph D
with minimum in- and outdegree at least k so that D does not
immerse ~K 2

2 (and hence does not immerse ~K3).
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Strong connectivity helps

Strongly k-edge-connected:
D − S is strongly connected ∀S ⊆ E (D) with |S | < k .
Arborescence with root v :
Spanning tree T of D s.t. all edges directed “away” from v

Edmonds’ Disjoint Arborescence Theorem: v1, . . . , v` ∈ V (D) (not
necessarily distinct). Then there exist edge-disjoint arborescences
T1, . . . ,T` so that Ti has root vi if and only if ∀X ⊂ V (D):

d+(X ) ≥ |{i : vi ∈ X , 1 ≤ i ≤ `}|.

Corollary: D strongly t(t − 1)-edge-connected digraph with
|V (D)| ≥ t ⇒ D contains an immersion of ~Kt .

Theorem: ∀t ≥ 3 there exists a simple digraph which is strongly
1
2 t(t − 3)-edge-connected and does not immerse ~Kt .
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Rough Structure – Eulerian Case

Theorem [DMMS] Let D be an Eulerian digraph. If ~Kt 6≤im D ⇒
∃ laminar family of edge-cuts, each of size < 2t(t − 1) s.t. every
block of the resulting vertex partition has at most t − 1 vertices.

This is a rough characterization because a digraph with the stated
separation property cannot contain ~Kt2-immersion.

Proof is based on ancient techniques:

I Gomory-Hu tree on the undirected graph

I Remove edges with µ(e) < 2t(t − 1)

I If a part has a block with ≥ t vertices, split off the remaining
vertices (Mader) and apply arborescence theorem
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Eulerian digraphs

Corollary: Every simple Eulerian digraph with minimum degree at
least t(t − 1) contains an immersion of ~Kt .

The quadratic bound can be strengthened for small values of t as
follows.

Theorem: For t ≤ 4, every simple Eulerian digraph of minimum
degree at least t − 1 contains an immersion of ~Kt .

Open for t = 5.
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