

Insecticidal Proteins from Mushrooms for controlling the Colorado Potato Beetle

Jerica Sabotič, Ida Šmid, Kristina Gruden, Jože Brzin, Meti Buh Gašparič, Ana Rotter, Katarina Koruza, Jana Žel and Janko Kos

Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia

Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia

Plant health for sustainable agriculture, Ljubljana, 11th – 12th May 2015

ΡΟΤΑΤΟ

ΡΟΤΑΤΟ

• Major potato pest worldwide

• Major potato pest worldwide

• Major potato pest worldwide

• Major potato pest worldwide

world production ~ 370 million tonnes world consumption ~ 31 kg per capita Source: FAOSTAT

One larva consumes app. 40 cm² of potato leaves per day. One adult beetle consumes app. 10 cm² of potato leaves per day.

Major potato pest worldwide

2003

• Rapidly aquires resistance to pesticides

One larva consumes app. 40 cm² of potato leaves per day. One adult beetle consumes app. 10 cm² of potato leaves per day.

Efficient protein digestion essential for normal growth, development and fertility

- Efficient protein digestion essential for normal growth, development and fertility
- Cysteine proteases (intestains) represent predominant digestive proteolytic activity

- Efficient protein digestion essential for normal growth, development and fertility
- Cysteine proteases (intestains) represent predominant digestive proteolytic activity
- Plants respond to leaf damage caused by larval feeding by expression of protease inhibitors

- Efficient protein digestion essential for normal growth, development and fertility
- Cysteine proteases (intestains) represent predominant digestive proteolytic activity
- Plants respond to leaf damage caused by larval feeding by expression of protease inhibitors
- CPB larvae adapt and change the composition of digestive proteolytic enzymes (insensitive to or inactivate ingested protease inhibitors)

- Efficient protein digestion essential for normal growth, development and fertility
- Cysteine proteases (intestains) represent predominant digestive proteolytic activity
- Plants respond to leaf damage caused by larval feeding by expression of protease inhibitors
- CPB larvae adapt and change the composition of digestive proteolytic enzymes (insensitive to or inactivate ingested protease inhibitors)
- Protease inhibitors of various sources considered for plant protection

MUSHROOMS as a source of proteins with insecticidal properties

cysteine protease inhibitors unique to basidiomycetes

Clitocypin

and

Macrocypins

Macrolepiota procera

Parasol mushroom

Clitocybe nebularis

Clouded agaric

cysteine protease inhibitors unique to basidiomycetes

Clitocypin

and

Macrocypins

Macrolepiota procera

Parasol mushroom

Clitocybe nebularis

Clouded agaric

SIMILAR BIOCHEMICAL PROPERTIES

- •small proteins (16.8 and 19.2 kDa)
- very stable proteins (temp, pH)

Sabotič et al., Biological Chemistry 2006; Sabotič et al., Protein Expr Purif 2007; Sabotič et al., FEBS Journal 2009

cysteine protease inhibitors unique to basidiomycetes

Clitocypin

and

Macrocypins

Macrolepiota procera

Parasol mushroom

Clitocybe nebularis

SIMILAR BIOCHEMICAL PROPERTIES

- •small proteins (16.8 and 19.2 kDa)
- •very stable proteins (temp, pH)

HIGH SEQUENCE VARIABILITY

•clitocypin: > 90% seq.id.

•no influence on inhibitory activity or specificity

macrocypins: five groups (Mcp1-5 with 75-86% seq.id.)
sequence varibility affects the inhibitory profile

Sabotič et al., Biological Chemistry 2006; Sabotič et al., Protein Expr Purif 2007; Sabotič et al., FEBS Journal 2009

cysteine protease inhibitors unique to basidiomycetes

Clitocypin

Clitocybe

nebularis

Clouded agaric

and

Macrocypins

Macrolepiota procera

Parasol mushroom

SIMILAR BIOCHEMICAL PROPERTIES

- •small proteins (16.8 and 19.2 kDa)
- •very stable proteins (temp, pH)

HIGH SEQUENCE VARIABILITY

•clitocypin: > 90% seq.id.

•no influence on inhibitory activity or specificity

macrocypins: five groups (Mcp1-5 with 75-86% seq.id.)
sequence varibility affects the inhibitory profile

SIMILAR BROAD INHIBITORY PATTERN (C1, C13)

Sabotič et al., Biological Chemistry 2006; Sabotič et al., Protein Expr Purif 2007; Sabotič et al., FEBS Journal 2009

cysteine protease inhibitors unique to basidiomycetes

Clitocypin

and

Macrocypins

Macrolepiota procera

Parasol mushroom

Clitocybe nebularis

Clouded agaric

- same fold: β-trefoil fold
- clitocypin and macrocypins share ~ 20% seq. id.

Renko et al., JBC 2010; Sabotič et al., FEBS Journal 2009

3D STRUCTURE AND MECHANISM OF INHIBITION

cMcp4a

Renko and Sabotič et al. JBC 2010

	EVPVYLYDRIKAEETGYTCAWRIQPADHGADGVYHIVGNVRIGSTDWADLREEYGEPQVYMKPVPVIPN-VYIPRWFILGYEE 1	69
	GPPVYLYDRIKAEETGYTYFWRIQPTDEGADGVYHIMGNSRIGSTDWADLREEGGKPQVYTKPVPVIPN-VYIPRWFILGYEE 1	6
	EVPVYLYDRIKADEVGYVLVWKIQPAYEDVDGVYSIMGNVRIGSTDWADLREEDNKPQVYMKPVPVVPN-VYIPRWFISEVKR 1	67
	GVPVYLYDRIKAEETGYTCVWRIQPTYEGVGGVYNIMGNSRIGSTDWADLRGEDGKPQVYTKPVPVIPN-VYIPRWFISEYKE 1	67
	GGPVYLYDRIRAEETGYVCEWRIQPAYEDVDGVFNIMGNSRIGSTDWADLREEGGKPQVYLKPVPVVPN-MYIPRWFISKVD- 1	66
S	NAPVIAGDPKEYILQLVPSTADVYIIRAPIQRIGVDVEVGVQGNTLVYKFFPVDGSGGDRPAWRFTRE 1	52
S	NAPVIAGDPKEYILQLVPSTTDVYIIRAPIQRVGVDVEVGVQGNNLVYKFFPVDGSGGDRPAWRFTRE 1	52
	NAPVIAGDPKEYILQLVPSTTDVYIIRAPIQRVGVDVEVGVQENTLVYKIFPVDGSGGDKAAWRFTRE 1	52

3D STRUCTURE AND MECHANISM OF INHIBITION

Renko and Sabotič et al. JBC 2010

۵n

papain-like proteases

		τU	20		50				00	00		/ 0	00	2	0
		.	,		.	.									
cMcpla	-MGFEDGF	YTILHLA	EGQHPNSI	IP <mark>GG</mark> I	YASSKI	D <mark>G</mark> KDVP	VTAI P	LGP	-QSKIRW	WIARDPQA	AGDDMYT:	ITEFRI	DNSIPGQ	WSRSPVET	87
gMcp2a	-MALEDGF	YTLRHLA	EDESPN	IPGGI	YASSKI	D <mark>G</mark> KDVP	VTAI P	LGP	-HGKIRW	WIARHPE <i>F</i>	AGDDMYT:	ITEFRV	DKSIPGQ	WARSPIEV	85
сМсрЗа	-MALEDGF	YTLRHLA	EGESPN	IPGGI	YASSKI	D <mark>g</mark> KDV <mark>P</mark>	VTAI P	LGP	-HSKIRW	WIARDPAA	AGDDMYT:	ITEIRD	DNCIPGQ	WARSPRET	85
cMcp4a	-MALEDGF	YTIRHLV	EGQHPS	IP <mark>GG</mark> I	YASSKI	D <mark>G</mark> KDE P'	VTAI P	LGP	-HSKIRW	WIAAAPEA	AGDDMYT:	ITEFRA	DKSIPGQ	WARSPTEI	85
gMcp5a	-MGFEDGF	YTIRHLV	EGQPPN	IP <mark>GG</mark> I	YASSKI	DGKDEP	VTAI P	LGP	-HSKIRW	WIARYPEA	AGEDMYT:	ITEFRV	DESIPGQ	WARPHNEV	85
gClt-Kras	MASLEDGI	YRLRAVT'	THNPDP	gv <mark>gg</mark> :	YAT-VI	EGARRP'	VKAI P	NTP	FFEQQIW	QVTRN	-ADGQYT:	IKYQGI	NTPFEYG	FSYDELEP	84
cClt-Kras	MASLEDGT	YRLRAVT'	ISNPDP	GV <mark>GG</mark>	YAT-VI	egarq p'	VKAI P	STP	FFERQIW	QVTRN	SDGQST	IKYQGI	NAPFEYG	FSYDQL <mark>E</mark> Q	84
cClt-Vrh	MASLEDGT	YRLRAVT	THNPDP	gv <mark>gg</mark> :	YAT-VI	EGARQP	VKAI P	NTP	FFERQYW	QVTRN	ADGQYT	IKYQGI	NTPFEYG	FSYDELEP	84

A REAL PROPERTY AND	cMcpla
	gMcp2a
and the state of	сМср3а
	cMcp4a

	100	110	120	130	140	150	160	170	
			<u>.</u> .		$ \ldots $				
	EVPVYLYDRIKAEE'	TGYTCAWRIQPA	ADHGADGVYH:	IVGNVRIGS	TDWADLREEYGE	PQVYMKPVP	VIPN-VYIPR	WFILGYEE	169
	GPPVYLYDRIKAEE'	TGYTYFWRIQP	[DEGADGVYH]	IMGNS <mark>RIG</mark> S	TDWADLREEGGK	PQVYTKPVP	VIPN-VYIPR	WFILGYEE	167
	EVPVYLYDRIKADE'	VGYVLVWKIQPA	AYEDVDGVYS	IMGNV <mark>RIG</mark> S	TDWADLREEDNK	PQVYM <mark>k</mark> pVP	VVPN-VYIPR	WFISEVKR	167
	GVPVYLYDRIKAEE'	TGYTCVWRIQP	[YEGVGGVYN]	IMGNS <mark>RIG</mark> S	TDWADLRGEDGK	PQVYTKPVP	VIPN-VYIPR	WFISEYKE	167
	GGPVYLYDRIRAEE'	TGYVCEWRIQPA	AYEDVDGVFN	IMGNS <mark>RIG</mark> S	TDWADLREEGGK	PQVYLKPVP	VVPN-MYIPR	WFISKVD-	166
as	NAPVIAGD	-PKEYILQLVPS	STADVYIIRA	PIQRIG-	VDVEVGVQG	NTLVYKFFP	VDGSGGDRPA	WRFTRE	152
as	NAPVIAGD	-PKEYILQLVPS	STTDVYIIRA	PIQRV <mark>G</mark> -	VDVEVGVQG	NNLVYKFFP	VDGSGGDRPA	WRFTRE	152
h	NAPVIAGD	-PKEYILQLVPS	STTDVYIIRA	PIQRV <mark>G</mark> -	VDVEVGVQE	NTLVYKIFP	VDGSGGDKAA	WRFTRE	152

3D STRUCTURE AND MECHANISM OF INHIBITION

cMcp1a gMcp2a cMcp3a cMcp4a Renko and Sabotič et al. JBC 2010

10

20

30

legumain

90

80

60

50

cMcpla	-MGFEDGFYTILHLAEGQHPNSF	IPGG	IYASSKDGKDVPVTAH	PLGP	-QSKIRWWIAR	DPQAGDI	DM <mark>YTI</mark> TEFRI	UN IPGQWSRSPVET	87
gMcp2a	-MALEDGFYTLRHLAEDESPN	IPGG	IYASSKDGKDVPVTAF	PLGP	-HGKIRWWIAR	HPEAGD	dm <mark>yti</mark> tefrv	DKSIPGQWARSPIEV	85
сМсрЗа	-MALEDGFYTLRHLAEGESPN	IPGG	IYASSKDGKDVPVTAH	PLGP	-HSKIRWWIAR	DPAAGD	DM <mark>YTI</mark> TEIRD	NCIPGQWARSPRET	85
cMcp4a	-MALEDGFYTIRHLVEGQHPS	IPGG	IYASSKDGKDEPVTAH	PLGP	-HSKIRWWIAA	APEAGD	dm <mark>yti</mark> tefra	DKSIPGQWARSPTEI	85
gMcp5a	-MGFEDGFYTIRHLVEGQPPN	IPGG	IYASSKDGKDEPVTAH	PLGP	-HSKIRWWIAR	YPEAGE	DMYTITEFRV	DESIPGQWARPHNEV	85
gClt-Kras	MASLEDGIYRLRAVTTHNPDP	GVGG	YAT-VEGARRPVKAH	PNTP	PFFEQQIWQVTR	NAD	GQYTIKYQGI	NCPFEYGFSYDELEP	84
cClt-Kras	MASLEDGTYRLRAVTTSNPDP	gv gg :	YAT-VEGARQPVKAH	PSTP	PFFERQIWQVTR	NSD	GQSTIKYQGI	N <mark>APFEYGFSYDQLE</mark> Q	84
cClt-Vrh	MASLEDGTYRLRAVTTHNPDP	GVGG	YAT-VEGAROPVKAH	PNTP	FFEROYWOVTR	NAD	GOYTIKYOGI	NTPFEYGFSYDELEP	84

40

	100	110	120	130	140	150	160	170	
		.			<u>. </u> .			<u>.</u>	
E	VPVYLYDRIKAE	ETGYTCAWRIQP	ADHGADGVYH	IVGNVRIGS	TDWADLREEYGH	EPQVYMKPVP	VIPN-VYIPR	WFILGYEE	169
G	PPVYLY <mark>D</mark> RIKAE	ETGYTYFWRIQP ⁽	TDEGADGVYH	IMGNSRIGS	TDWADLREEGGH	KPQVYTKPVP	VIPN-VYIPR	WFILGYEE	167
E	VPVYLY <mark>D</mark> RIKADI	EVGYVLVWKIQPA	AYEDVDGVYS	IMGNVRIGS	TDWADLREEDNE	KPQVYMKPVP	VVPN-VYIPR	WFISEVKR	167
G	VPVYLY <mark>D</mark> RIKAEH	ETGYTCVWRIQP ⁽	TYEGVGGVYN	IMGNSRIGS	TDWADLRGEDGH	KPQVYTKPVP	VIPN-VYIPR	WFISEYKE	167
G	GPVYLY <mark>D</mark> RIRAEH	ETGYVCEWRIQP	AYEDVDGVFN	IMGNSRIGS	TDWADLREEGGH	KPQVYLKPVP	VVPN-MYIPR	WFISKVD-	166
as N	APVIAGD	PKEYILQLVP	STADVYIIRA	PIQRIG-	VDVEVGVQ0	GNTLVYKFFP	VDGSGGDRPA	WRFTRE	152
as N	APVIAGD	PKEYILQLVP	STTDVYIIRA	PIQRVG-	VDVEVGVQ0	GNNLVYKFFP	VDGSGGDRPA	WRFTRE	152
h N	APVIAGD	PKEYILQLVP	STTDVYIIRA	PIQRVG-	VDVEVGVQH	ENTLVYKIFP	VDGSGGDKAA	WRFTRE	152

3D STRUCTURE AND MECHANISM OF INHIBITION

cMcpla gMcp2a сМср3а cMcp4a

Renko and Sabotič et al. JBC 2010

		100	-		alla dina	0						100		100		1,0	
				
	EVPVYI	LYDRIKAE	EETGYTC	CAWRIQP	ADHGA	DGVYH	IVGNV	RIGST	DWAD	LREE	YGEPQ	VYMKE	VPVIE	PN-VY	IPRWF	TLGYEE	169
	GPPVYI	LYDRIKAE	EETGYTY	FWRIQP	TDEGA	DGVYH	IMGNS	RIGST	DWAD	LREE(GGKPQ	VYT <mark>k</mark> e	VPVII	PN-VY	IPRWF	ILGYEE	167
	EVPVYI	LYDRIKAI	DEVGYVI	JVWKIQP	AYEDV	DGVYS	IMGNV	RIGST	DWAD	lreei	DNKPQ	VYM <mark>k</mark> e	v <mark>pv</mark> ve	PN-VY	IPRWF	ISEVKR	167
	GVPVYI	LYDRIKAH	EETGYTC	CVWRIQP	TYEGV	GGVYN	IMGNS	RIGSI	DWAD	lrgei	DGKPQ	VYT <mark>k</mark> e	VPVII	PN-VY	IPRWF	ISEYKE	167
	GGPVYI	LYDRIRAE	EETGYVC	CEWRIQP	AYEDV	DGVFN	IMGNS	RIGST	DWAD	LREE	GGKPQ	VYL <mark>k</mark> f	VPVVE	PN-MY	IPRWF	'ISKVD-	166
as	NAPVIA	AGD	PKEY	ILQLVP	STADV	YIIRA	PIQH	RIG	VD	VEVGV	VQGNT	LVYKF	FPVDG	GSGGD	RPAWR	RFTRE	152
as	NAPVIA	AGD	PKEY	ILQLVP	STTDV	YIIRA	PIQI	RVG	VD	VEVG	VQGNN	LVYKF	FPVDG	GSGGD	RPAWR	RFTRE	152
h	NAPVIA	AGD	PKEY	ILQLVP	STTDV	YIIRA	PIQF	RV <mark>G</mark>	VD	VEVGV	VQENT	LVYKI	FPVDO	GSGGD	KAAWR	RFTRE	152

- Small proteins resistant to extreme conditions (pH & temp)
- Resistant to proteolytic degradation
- Inhibitors of cysteine proteases (broad spectrum)

for controlling Colorado potato beetle

- Small proteins resistant to extreme conditions (pH & temp)
- Resistant to proteolytic degradation
- Inhibitors of cysteine proteases (broad spectrum)

Mycocypins for controlling Colorado potato beetle

- Small proteins resistant to extreme conditions (pH & temp)
- Resistant to proteolytic degradation
- Inhibitors of cysteine proteases (broad spectrum)

 Feeding assays with potato leaves soaked in protein solution (natural isolates and recombinant mycocypins)

Mycocypins for controlling Colorado potato beetle

- Small proteins resistant to extreme conditions (pH & temp)
- Resistant to proteolytic degradation
- Inhibitors of cysteine proteases (broad spectrum)

- Feeding assays with potato leaves soaked in protein solution (natural isolates and recombinant mycocypins)
- > Preparation of transgenic plants expressing Mcp4 and Clt
- > Feeding assays with transgenic plants

Mycocypins for controlling Colorado potato beetle

- Small proteins resistant to extreme conditions (pH & temp)
- Resistant to proteolytic degradation
- Inhibitors of cysteine proteases (broad spectrum)

- Feeding assays with potato leaves soaked in protein solution (natural isolates and recombinant mycocypins)
- > Preparation of transgenic plants expressing Mcp4 and Clt
- > Feeding assays with transgenic plants
- > Analysis of larval gut proteolytic activity and its inhibition by mycocypins

Šmid et al., J Agric Food Chem 2013; Šmid et al., Pestic Biochem Physiol 2015

for controlling Colorado potato beetle

- Small proteins resistant to extreme conditions (pH & temp)
- Resistant to proteolytic degradation
- Inhibitors of cysteine proteases (broad spectrum)

- Feeding assays with potato leaves soaked in protein solution (natural > isolates and recombinant mycocypins)
- Preparation of transgenic plants expressing Mcp4 and Clt >
- Feeding assays with transgenic plants >
- Analysis of larval gut proteolytic activity and its inhibition by mycocypins >
- Analysis of gene expression of known adaptation-related digestive > enzymes in larval guts

Šmid et al., J Agric Food Chem 2013; Šmid et al., Pestic Biochem Physiol 2015

Mycocypins

• Transgenic potato expressing macrocypin 4 used in feeding assays

• Transgenic potato expressing macrocypin 4 used in feeding assays

Macrocypin 4 negatively affects weight gain of CPB larvae.

- Transgenic potato expressing macrocypin 4 used in feeding assays
- Feeding assays using potato leaves coated with macrocypins 1, 3 and 4

- Transgenic potato expressing macrocypin 4 used in feeding assays
- Feeding assays using potato leaves coated with macrocypins 1, 3 and 4

Macrocypin 1 significantly lowers weight gain of CPB larvae.

- Transgenic potato expressing macrocypin 4 used in feeding assays
- Feeding assays using potato leaves coated with macrocypins 1, 3 and 4

Macrocypin 1 significantly lowers weight gain of CPB larvae.

What is the mechanism for the negative effect?

Enzymatic tests using fractionated protein extract from CPB larval guts

Macrocypins inhibit a specific subset of digestive cysteine proteases intestains

- Macrocypins inhibit a specific subset of digestive cysteine proteases intestains
- Macrocypins do not inhibit serine or aspartic proteases

- Macrocypins inhibit a specific subset of digestive cysteine proteases intestains
- Macrocypins do not inhibit serine or aspartic proteases
- Macrocypins do not inhibit glycosidases

- Macrocypins inhibit a specific subset of digestive cysteine proteases intestains
- Macrocypins do not inhibit serine or aspartic proteases
- Macrocypins do not inhibit glycosidases
- Macrocypins do not elicit an expected adaptation response in CPB larval gut at transcriptional level.

Enzymatic tests using fractionated protein extract from CPB larval guts

- Macrocypins inhibit a specific subset of digestive cysteine proteases intestains
- Macrocypins do not inhibit serine or aspartic proteases
- Macrocypins do not inhibit glycosidases
- Macrocypins do not elicit an expected adaptation response in CPB larval gut at transcriptional level.

International patent application: Istinič, Sabotič, Gruden, Brzin, Buh Gašparič, Žel. »Use of macrocypins as pesticidal agents« (PCT/EP2012/065373)

• Transgenic potato expressing clitocypin used in feeding assays

Clitocypin negatively affects weight gain of CPB larvae.

- Transgenic potato expressing clitocypin used in feeding assays
- Feeding assays using potato leaves coated with natural and recombinant clitocypin

Clitocypin negatively affects weight gain of CPB larvae.

The effect is concentration dependent and greater against younger larvae.

- Transgenic potato expressing clitocypin used in feeding assays
- Feeding assays using potato leaves coated with natural and recombinant clitocypin

Clitocypin negatively affects weight gain of CPB larvae.

The effect is concentration dependent and greater against younger larvae.

What is the mechanism for the negative effect?

Šmid et al., Pestic Biochem Physiol 2015

Enzymatic tests using fractionated protein extract from CPB larval guts

Šmid et al., Pestic Biochem Physiol 2015

- Clitocypin strongly inhibits general proteolytic activity (azocasein)
- Clitocypin shows a broad pattern of inhibition of different digestive cysteine proteases (intestains)

- Clitocypin strongly inhibits general proteolytic activity (azocasein)
- Clitocypin shows a broad pattern of inhibition of different digestive cysteine proteases (intestains)
- Clitocypin does not inhibit serine or aspartic proteases

- Clitocypin strongly inhibits general proteolytic activity (azocasein)
- Clitocypin shows a broad pattern of inhibition of different digestive cysteine proteases (intestains)
- Clitocypin does not inhibit serine or aspartic proteases
- Clitocypin does not inhibit glycosidases

- Clitocypin strongly inhibits general proteolytic activity (azocasein)
- Clitocypin shows a broad pattern of inhibition of different digestive cysteine proteases (intestains)
- Clitocypin does not inhibit serine or aspartic proteases
- Clitocypin does not inhibit glycosidases
- Clitocypin does not elicit an expected adaptation response in CPB larval gut at transcriptional level.

MUSHROOMS are a rich source of potential insecticidal / phytoprotective proteins

ADVANTAGES:

- Different
- Unique molecular features
 - Stable protein scaffold
 - Specificity and selectivity
 - Resistance to proteolytic digestion
- Diversity offering different mechanisms of insecticidal activity
- Evolutionary distance

Jožef Stefan Institute

Department of Biotechnology

prof. Janko Kos dr. Jože Brzin dr. Tatjana Popovič dr. Nina Slapar dr. Jure Pohleven Katarina Koruza

Department of Biochemistry and Molecular and Structural Biology

prof. Dušan Turk dr. Miha Renko

National Institute of Biology

Department of Biotechnology and Systems Biology

prof dr. Maja Ravnikar prof dr. Kristina Gruden prof. dr. Jana Žel dr. Ida Šmid dr. Meti Buh Gašparič dr. Ana Rotter dr. Marko Petek

