

Data Mining: Successes and Failures

Christos Faloutsos CMU

Failures

- non-technical: only 'Public Relations'
- we are too modest to 'brag':
 - SAS, SPSS, +: (SAS on TV)
 - [Heckerman, KDD '04]: better cancer data analysis
- PLUS: companies often keep successes silent, to maintain edge
 - colleagues at search engines achieve \$Ms in revenue increases

Successes

- merging of DB, ML, Stat
- excellent outreach:
 - bio-informatics
 - social networks
 - text / IR
 - game theory / economics
 - etc etc

Next steps, IMHO

- keep on the out-reach
- Large scale data mining (Tera and Peta bytes)
 - simple algorithms may give stunning results, when applied on massive data
 - scalability [in this KDD: Usama; Jon; ++]
 - parallelism

Scalability

- Google: > 450,000 processors in clusters of ~2000 processors each Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003
- target: hundreds of Tb, to several Peta-bytes
- (Netflix sample:2Gb uncompressed)
- Yahoo: ~5Pb [Usama's keynote]

E.g.: self-* system @ CMU

- >200 nodes
- 40 racks of computing equipment
- 774kw of power.
- target: 1 PetaByte
- goal: self-correcting, selfsecuring, self-monitoring, self-

. . .

DM for Tera- and Peta-bytes

Two-way street:

- <- DM can use such infrastructures to find patterns
- -> DM can help such infrastructures become self-healing, self-adjusting, 'self-*'

Conclusion

- **Failures**: lack of 'bragging' ^(C)
- **Successes**: stunning out-reach + crossdisciplinarity
- Next steps: scalability: emphasis on Systems <-> DM collaboration