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Introduction

Graphs

Model objects and their relationships

Everywhere in various scientific domains

Bioinformactics: protein interaction networks

Chemistry: chemical compound structures

Social science: social networks

Many more: work flows, Web site structures, etc

Existing Research on Graph Search

Focus on structural similarity search: find the graphs structurally

the same as or similar to a given query graph
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Introduction - Motivation

(a) Graph A (b) Graph B (c) Graph C (d)Query

Application Scenario

Structural similarity search

Need: find co-occurrent molecular structure of a given molecule

Structural similarity search fails to find such results

Co-occurrent structures may decide some chemical properties
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Introduction - Correlation Search in Graph Databases

Correlation

Capture the underlying dependence between objects

Well-studied in boolean databases, quantitative databases,

multimedia databases, data streams, and many more

New Challenges in Graph Databases

Large search space

Each subgraph of a graph in the database is a candidate

Exponentially many subgraphs

Expensive graph operation

Subgraph isomorphism testing (NP-Complete)
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Introduction - Contributions

New Problem of Correlated Graph Search (CGS)

Correlation measure: Pearson’s correlation coefficient

Effective and Efficient Solution: CGSearch

Theoretical bounds for the support (occurrence probability) of a

candidate

Candidate generation from the projected database of query graph

Three heuristic rules to further reduce number of candidates
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Problem Definition - Correlation Measure

Pearson’s Correlation Coefficient

Popularly used as a correlation measure in many other contexts:

stream data, transaction databases

Definition

φ(g1, g2) =
supp(g1, g2) − supp(g1)supp(g2)

√

supp(g1)supp(g2)(1 − supp(g1))(1 − supp(g2))

Measure the departure of two variables from independence

Fall within [−1, 1]: 0 indicates independence; positive indicates

positive correlation; negative indicates negative correlation

Our work: focus on positive correlation
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Problem Definition

CGS Problem

Given a graph database D, a correlation query graph q and a minimum

correlation threshold θ (0 < θ ≤ 1), find the set of all graphs whose

Pearson’s correlation coefficient with q is no less than θ
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Solution - Candidate Generation

Bounds of supp(g)

supp(q)

θ−2(1 − supp(q)) + supp(q)
≤ supp(g) ≤

supp(q)

θ2(1 − supp(q)) + supp(q)

Range: Candidate Generation from D

Mine the set of Frequent subGraphs (FGs) from D using the above two

bounds as thresholds

Drawback

All existing FG mining algorithms generate graphs with higher

support before those with lower support

Not efficient and scalable, especially when D is large or the lower

bound is low
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Solution - Candidate Generation (cont’)

Bound of supp(q, g;Dq)

supp(q, g;Dq) ≥
1

θ−2(1 − supp(q)) + supp(q)

Candidate Generation from Dq

Mine the set of FGs from Dq using the above threshold

Compared with Range

Dq is much smaller than D

The minimum support threshold is higher

Advantages

Efficient candidate generation

Significant reduction in search space
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Solution - Heuristic Rules

Heuristic 1: identify graphs that are guaranteed to be answers

All supergraphs of q in the candidate set are in the answer set

Heuristics 2 and 3: get rid of false-positives

If a graph g is not in the answer set, prune all its subgraphs that have

the same support as q or have support less than

(θ
√

(1−supp(q))supp(g)(1−supp(g))
supp(q) + supp(g)) in Dq
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Solution - CGSearch Algorithm

Input: Graph database D, query q, correlation threshold θ

Output: The answer set Aq

1 Obtain Dq

2 Mine the set of candidate graphs C from Dq, using
1

θ−2(1−supp(q))+supp(q)
as the minimum support threshold

3 Check whether φ(q, g) ≥ θ for each graph g ∈ C;

refine C by three heuristic rules
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Performance Evaluation

Datasets

Real dataset: 100K compound structures of cancer and AIDS

data, averagely 21 nodes and 23 edges in each graph, 88 distinct

labels

Synthetic dataset: four datasets of 100K graphs by varying

average number of edges from 40 to 100, 30 distinct labels and

0.15 average graph density

Other Algorithms Used

Obtain projected database: FG-index [SIGMOD’07]

Mine FGs: gSpan [Yan and Han, ICDM’02]

Baseline

Range: candidate generation from D with a support range
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Effect of Candidate Generation when Varying Query

Support

Summary

CGSearch is two orders of magnitude faster than Range

The candidate set produced by CGSearch is much closer to the

answer set and is over an order of magnitude smaller than Range
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Effect of Graph Size

Summary

CGSearch is up to four orders of magnitude faster and consumes

41 times less memory than Range

CGSearch is much more stable on resource usage than Range
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Conclusions

Correlated Graph Search

Take into account the occurrence distributions of graphs using

Pearson’s correlation coefficient

Mining Algorithm: CGSearch

Theoretical bounds for support of candidates

Candidate generation from a projected database

Three heuristic rules

Experiments

Candidate generation from the projected database is efficient

Three heuristic rules are effective

Compared with Range, CGSearch is orders of magnitude faster

CGSearch achieves very stable performance for various query

support, minimum correlation thresholds, as well as graph sizes

Y. Ke et al (CSE, HKUST) KDD’07 16 / 17



Thank you

Q & A

Poster: Board 2 on Aug 13
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