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Introduction

@ Model objects and their relationships
@ Everywhere in various scientific domains

@ Bioinformactics: protein interaction networks
Chemistry: chemical compound structures
Social science: social networks
Many more: work flows, Web site structures, etc
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Introduction

@ Model objects and their relationships
@ Everywhere in various scientific domains

@ Bioinformactics: protein interaction networks
Chemistry: chemical compound structures
Social science: social networks
Many more: work flows, Web site structures, etc

Existing Research on Graph Search

@ Focus on structural similarity search: find the graphs structurally
the same as or similar to a given query graph
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Introduction - Motivation

(a) Graph A (b) Graph B (c) Graph C (d)Query

Application Scenario
@ Structural similarity search

@ Need: find co-occurrent molecular structure of a given molecule
@ Structural similarity search fails to find such results
@ Co-occurrent structures may decide some chemical properties
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Introduction - Correlation Search in Graph Databases

Correlation
@ Capture the underlying dependence between objects

@ Well-studied in boolean databases, quantitative databases,
multimedia databases, data streams, and many more
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Introduction - Correlation Search in Graph Databases

Correlation
@ Capture the underlying dependence between objects

@ Well-studied in boolean databases, quantitative databases,
multimedia databases, data streams, and many more

New Challenges in Graph Databases

@ Large search space

@ Each subgraph of a graph in the database is a candidate
o Exponentially many subgraphs

@ Expensive graph operation
@ Subgraph isomorphism testing (NP-Complete)
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Introduction - Contributions

New Problem of Correlated Graph Search (CGS)
@ Correlation measure: Pearson’s correlation coefficient
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Introduction - Contributions

New Problem of Correlated Graph Search (CGS)
@ Correlation measure: Pearson’s correlation coefficient

Effective and Efficient Solution: CGSearch

@ Theoretical bounds for the support (occurrence probability) of a
candidate

@ Candidate generation from the projected database of query graph
@ Three heuristic rules to further reduce number of candidates
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Problem Definition - Correlation Measure

Pearson’s Correlation Coefficient

Popularly used as a correlation measure in many other contexts:
stream data, transaction databases
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Problem Definition - Correlation Measure

Pearson’s Correlation Coefficient

Popularly used as a correlation measure in many other contexts:
stream data, transaction databases

Definition

$(01, Gp) = supp(g1, g2) — supp(g1)supp(gz)
’ \/supp(gr)supp(g2) (1 — supp(g1) (1 — supp(g2))

@ Measure the departure of two variables from independence

@ Fall within [—1,1]: 0 indicates independence; positive indicates
positive correlation; negative indicates negative correlation

@ Our work: focus on positive correlation
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Problem Definition

CGS Problem

Given a graph database D, a correlation query graph g and a minimum
correlation threshold 6 (0 < # < 1), find the set of all graphs whose
Pearson’s correlation coefficient with g is no less than 6
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Solution - Candidate Generation

Bounds of supp(g)

supp(q)
1 — supp(q)) + supp(q)

supp(q)
0=2(1 — supp(q)) + supp(q)

< supp(9) < 7 (
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Solution - Candidate Generation

Bounds of supp(g)

supp(q)
1 — supp(q)) + supp(q)

supp(q)
0=2(1 — supp(q)) + supp(q) )

: Candidate Generation from D

Mine the set of Frequent subGraphs (FGs) from D using the above two
bounds as thresholds )

< supp(g) < 72

Drawback

@ All existing FG mining algorithms generate graphs with higher
support before those with lower support

@ Not efficient and scalable, especially when D is large or the lower
bound is low
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Solution - Candidate Generation (cont’)

Bound of supp(q, g; D)

1
sy, ,9:Dq) =
pr(9, g Dg) 6-2(1 — supp(q)) + supp(q)
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Solution - Candidate Generation (cont’)

Bound of supp(q, g; D)

1
sy, ,9:Dq) =
pr(9, g Dg) 6-2(1 — supp(q)) + supp(q)
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Solution - Candidate Generation (cont’)

Bound of supp(q, g; D)

1
su ,0:Dg) >
pp(q, 9; Dq) 6-2(1 — supp(q)) + supp(q)

Candidate Generation from D,
Mine the set of FGs from D, using the above threshold

Compared with Range

@ Dg is much smaller than D
@ The minimum support threshold is higher

Advantages

@ Efficient candidate generation
@ Significant reduction in search space
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Solution - Heuristic Rules

Heuristic 1: identify graphs that are guaranteed to be answers
All supergraphs of g in the candidate set are in the answer set
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Solution - Heuristic Rules

Heuristic 1: identify graphs that are guaranteed to be answers
All supergraphs of g in the candidate set are in the answer set

Heuristics 2 and 3: get rid of false-positives

If a graph g is not in the answer set, prune all its subgraphs that have
the same support as g or have support less than

\/ (1—supp(q)) :jgg ggh supp(9)) supp(g)) in Dg
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Solution - CGSearch Algorithm

Input: Graph database D, query q, correlation threshold 6
Output: The answer set Aq
@ Obtain Dg

@ Mine the set of candidate graphs C from Dy, using
as the minimum support threshold

0=2(1— supp(q))+suxnp(q)
© Check whether ¢(q, g) > 6 for each graph g € C;
refine C by three heuristic rules
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Performance Evaluation

@ Real dataset: 100K compound structures of cancer and AIDS
data, averagely 21 nodes and 23 edges in each graph, 88 distinct
labels

@ Synthetic dataset: four datasets of 100K graphs by varying
average number of edges from 40 to 100, 30 distinct labels and
0.15 average graph density

Other Algorithms Used

@ Obtain projected database: FG-index [SIGMOD’07]
@ Mine FGs: gSpan [Yan and Han, ICDM’02]

Baseline
@ Range: candidate generation from D with a support range
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Effect of Candidate Generation when Varying Query
Support

@ CGSearch is two orders of magnitude faster than Range

@ The candidate set produced by CGSearch is much closer to the
answer set and is over an order of magnitude smaller than Range
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Effect of Graph Size

@ CGSearch is up to four orders of magnitude faster and consumes
41 times less memory than Range

@ CGSearch is much more stable on resource usage than Range
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Conclusions

Correlated Graph Search

Take into account the occurrence distributions of graphs using
Pearson’s correlation coefficient

Mining Algorithm: CGSearch
@ Theoretical bounds for support of candidates

@ Candidate generation from a projected database
@ Three heuristic rules )

@ Candidate generation from the projected database is efficient
@ Three heuristic rules are effective

@ Compared with Range, CGSearch is orders of magnitude faster

@ CGSearch achieves very stable performance for various query
support, minimum correlation thresholds, as well as graph sizes
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