Distributed and Scalable OWL EL Reasoning

1Raghava Mutharaju 'Pascal Hitzler ~!Prabhaker Mateti
2Freddy Lécué

LWright State University, OH, USA.

2Smarter Cities Technology Centre, IBM Research, Dublin, Ireland.

12t Extended Semantic Web Conference (ESWC 2015),
Portoroz, Slovenia

Overview

© Introduction

© Preliminaries
e ELTT profile
@ Normalization
@ Classification

© Approach
@ Rules

@ Rule Processes
@ Optimizations
© Results
@ Future Work
@ Conclusion

Introduction

Overview

© Introduction

Introduction

Introduction

Existing reasoners run on a single machine.

@ They are constrained by the resources available to a single
machine.
@ Automatic generation of axioms result in very large
ontologies.
e streaming data (sensors, tweets)
o text

Additional axioms are generated during the reasoning process.

Existing reasoners are overwhelmed by these large ontologies.

Preliminaries

Overview

© Preliminaries
e ELTT profile
@ Normalization
@ Classification

Preliminaries

ELTT profile

@ Most of description logic &£ is supported, which underlies
OWL 2 EL profile.
@ Axioms can have one of the following forms
e CLC D, where C and D are defined by the grammar

Co=A|T|L|CNC|3r.C|{a}
D:=A|T|L|DND|3r.D|3r{a}
eno---orCr

where A is a concept, r, r; are roles, and a an individual.

@ Axioms of the form C C {a} are not supported.

Preliminaries
°

Normalization

All concept inclusions have one of the forms
e AALB
e Ain---NMA,CB
e Ay Cdr.As
e JrAtLCB

All role inclusions have one of the forms
erLCs

enonltn

Preliminaries
.

Classification

@ We focus on the reasoning task called classification.

@ It is the computation of the complete subsumption hierarchy,
i.e. all logical consequences of the form A C B involving all
concept names and nominals A and B.

@ We use a set of rules to classify a given &£ ontology.

Approach

Overview

© Approach
@ Rules

@ Rule Processes

Rn | Input Action
RI |ACB U[B] U= U[A]
R2 | AAn---MA,C B | UB] U= UlAi]N---NnU[A)]
R3 | AC3r.B R[r] U= {(X,B)| X € UA]}
R4 | 3rACB Q[r] u= {(Y,B)|Y € UA]}
R5 | R[r], Q[r] UlB] U= {X | (X,Y) e R[]

and (Y, B) € Q[r]}
R6 | R[r] U[L] u= {X|(X,Y) € R|r]

and B e U[l]}

R7 | rCs R[s] U= RIr]
R8 | rosCt R[t] U= {(X,2)|(X,Y) € R|r]

Table:

and (Y, Z) € R[s]}

Completion Rules

Approach
®00

Rule Processes

@ Input ontology O can be partitioned into eight mutually
disjoint ontologies, O = O U ---U Og

@ Ontology O; is assigned to a subcluster (subset of machines in
the cluster) SC;

@ Rule Ri must be applied only on O;

@ From the available machines, eight subclusters are created,
one for each rule.

@ O; is further divided up among the machines in the subcluster
(not duplicated).

Approach
ceo

Rule Processes

SC and SCqg

Figure: Node assignment to rules and dependency among the completion
rules. For simplicity, only one node is shown to hold results.

Approach
ooe

Termination

repeat
Ki := apply Ri on O; once;
broadcast(K;);

nUpdates := barrier-sum-of Kj;
until nUpdates = 0,
Algorithm 1: Wrapper for Ri

K; is associated with each Rule Ri.
K; is the number of updates made to result/intermediate sets.
Barrier synchronization is used in waiting for K; from all Ri

If no rule process made an update, they quit; otherwise, they
continue with another iteration.

Optimizations

Overview

@ Optimizations

Optimizations

Optimizations

e Dynamic Load Balancing: Idle nodes take (steal) work from
busy nodes.

@ Rule Dependencies: Rule Ri need not be triggered again if
the output from rules it is depending on does not change.

e Data Partitioning Strategy: Most of the data required for
rule application is available locally on each node.

Results

Overview

© Results

Results

Results

Implemented in Java and is called DistEL
Redis is the key-value store that was used
Available from http://github.com/raghavam/DistEL

Amazon's EC2 m3.xlarge instances are used (4 cores, 15GB
RAM). 5GB given to JVM.

Machine configuration meant to reflect commodity hardware.

http://github.com/raghavam/DistEL

Results
Results

Ontology Before After
GO 87,137 868,996
SNOMED 1,038,481 | 14,796,555
SNOMEDx2 | 2,076,962 | 29,593,106
SNOMEDx3 | 3,115,443 | 44,389,657
SNOMEDx5 | 5,192,405 | 73,982,759
Traffic 7,151,328 | 21,840,440

Table: Number of axioms, before and after classification, in ontologies.

Results

Results

Ontology ELK| JCEL |Snorocket| Pellet|HermiT |FaCT++
GO 23.5 57.4 40.3| 2314 91.7| 367.89
SNOMED 31.8| 126.6 52.34|620.46| 1273.7| 1350.5

SNOMEDx2 77.3| OOM? OOM?|OOM?| OOM?| OOM?
SNOMEDx3| OOM?| OOM? OOM? | OOM?| OOM?*| OOM?
SNOMEDx5| OOM?| OOM? OOM? | OOM?| OOM?*| OOM?
Traffic OOMP | OOMe OOMe|OOMP| OOMP| OOMe©

Table: Classification times in seconds. OOM?: reasoner runs out of
memory. OOMP: reasoner runs out of memory during incremental
classification. OOME®: ontology too big for OWL API to load in memory.

Results
Results

Ontology | 8 nodes|16 nodes|24 nodes| 32 nodes| 64 nodes
GO 134.49| 114.66| 109.46| 156.04| 137.31
SNOMED 544.38| 435.79| 407.38| 386.00| 444.19
SNOMEDx2| 954.17| 750.81| 717.41| 673.08] 799.07
SNOMEDx3| 1362.88| 1007.16| 960.46| 928.41| 1051.80
SNOMEDx5| 2182.16| 1537.63| 1489.34| 1445.30| 1799.13
Traffic |60004.54 |41729.54|39719.84|38696.48 | 34200.17

Table: Classification time (in seconds) of DistEL

Results
Results

Node MB
R1 | 186.72
R2 0.81
R3 | 257.47
R4 0.79
R5 1970
R6 | 380.61
R7 0.79
R8 | 1470.00

Result | 654.53

Total | 4921.72

Table: Memory taken by Redis on each node for traffic data

Results
Results

Nodes | Runtime | Speedup
8| b544.38 1.00

16 435.79 1.24

24 | 407.38 1.33

32| 386.00 1.41

64 | 444.19 1.22

Table: Speedup achieved by DistEL on SNOMED CT

Future Work

Overview

@ Future Work

Future Work

Future Work

@ This is a work-in-progress and more work needs to be done
w.r.t performance improvements.

@ Explore other ontology partitioning strategies as well as rule
sets (ELK etc.).

@ Fine grained analysis on larger datasets with higher number of
nodes in the cluster.

o Use multi-threading

@ Alternatives to Redis including custom data structures.

Conclusion

Overview

@ Conclusion

Conclusion

Conclusion

@ Existing reasoners were not able to classify traffic data and
other large ontologies.

@ DistEL, a distributed reasoner is able to classify the large
ontologies.

@ It shows good speedup with increase in the number of
machines in the cluster.

Conclusion

Thank You

Thank you

	Introduction
	Preliminaries
	E L++ profile
	Normalization
	Classification

	Approach
	Rules
	Rule Processes

	Optimizations
	Results
	Future Work
	Conclusion

