
Distributed and Scalable OWL EL Reasoning

1Raghava Mutharaju 1Pascal Hitzler 1Prabhaker Mateti
2Freddy Lécué

1Wright State University, OH, USA.

2Smarter Cities Technology Centre, IBM Research, Dublin, Ireland.

12th Extended Semantic Web Conference (ESWC 2015),
Portoroz, Slovenia

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Overview

1 Introduction

2 Preliminaries
EL++ profile
Normalization
Classification

3 Approach
Rules
Rule Processes

4 Optimizations

5 Results

6 Future Work

7 Conclusion

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Overview

1 Introduction

2 Preliminaries
EL++ profile
Normalization
Classification

3 Approach
Rules
Rule Processes

4 Optimizations

5 Results

6 Future Work

7 Conclusion

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Introduction

Existing reasoners run on a single machine.

They are constrained by the resources available to a single
machine.

Automatic generation of axioms result in very large
ontologies.

streaming data (sensors, tweets)
text

Additional axioms are generated during the reasoning process.

Existing reasoners are overwhelmed by these large ontologies.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Overview

1 Introduction

2 Preliminaries
EL++ profile
Normalization
Classification

3 Approach
Rules
Rule Processes

4 Optimizations

5 Results

6 Future Work

7 Conclusion

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

EL++ profile

Most of description logic EL++ is supported, which underlies
OWL 2 EL profile.

Axioms can have one of the following forms

C v D, where C and D are defined by the grammar

C ::= A | > | ⊥ | C u C | ∃r .C | {a}

D ::= A | > | ⊥ | D u D | ∃r .D | ∃r .{a}

r1 ◦ · · · ◦ rn v r

where A is a concept, r , ri are roles, and a an individual.

Axioms of the form C v {a} are not supported.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Normalization

All concept inclusions have one of the forms

A1 v B

A1 u · · · u An v B

A1 v ∃r .A2

∃r .A1 v B

All role inclusions have one of the forms

r v s

r1 ◦ r2 v r3

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Classification

We focus on the reasoning task called classification.

It is the computation of the complete subsumption hierarchy,
i.e. all logical consequences of the form A v B involving all
concept names and nominals A and B.

We use a set of rules to classify a given EL++ ontology.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Overview

1 Introduction

2 Preliminaries
EL++ profile
Normalization
Classification

3 Approach
Rules
Rule Processes

4 Optimizations

5 Results

6 Future Work

7 Conclusion

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Rules

Rn Input Action
R1 A v B U[B] ∪= U[A]
R2 A1 u · · · u An v B U[B] ∪= U[A1] ∩ · · · ∩ U[An]
R3 A v ∃r .B R[r] ∪= {(X ,B) | X ∈ U[A]}
R4 ∃r .A v B Q[r] ∪= {(Y ,B) | Y ∈ U[A]}
R5 R[r],Q[r] U[B] ∪= {X | (X ,Y) ∈ R[r]

and (Y ,B) ∈ Q[r]}
R6 R[r] U[⊥] ∪= {X | (X ,Y) ∈ R[r]

and B ∈ U[⊥]}
R7 r v s R[s] ∪= R[r]
R8 r ◦ s v t R[t] ∪= {(X ,Z) | (X ,Y) ∈ R[r]

and (Y ,Z) ∈ R[s]}

Table: Completion Rules

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Rule Processes

Input ontology O can be partitioned into eight mutually
disjoint ontologies, O = O1 ∪ · · · ∪ O8

Ontology Oi is assigned to a subcluster (subset of machines in
the cluster) SCi

Rule Ri must be applied only on Oi

From the available machines, eight subclusters are created,
one for each rule.

Oi is further divided up among the machines in the subcluster
(not duplicated).

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Rule Processes

Results

R3
R3

R4
R4
R4

U[X]
U[X]

R5
R5
R5
R5

SC3

SC1 and SC2

SC7 and SC8

SC5

SC4

U[X]

R5

R1

R1

U[X]

R2

R2

R7

R7

R8

R8

R[r]

R[r]

R6
R6
U[X]

SC6

U[X]

Q[r]

Figure: Node assignment to rules and dependency among the completion
rules. For simplicity, only one node is shown to hold results.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Termination

repeat
Ki := apply Ri on Oi once;
broadcast(Ki);
nUpdates := barrier-sum-of Ki ;

until nUpdates = 0 ;
Algorithm 1: Wrapper for Ri

Ki is associated with each Rule Ri.

Ki is the number of updates made to result/intermediate sets.

Barrier synchronization is used in waiting for Ki from all Ri

If no rule process made an update, they quit; otherwise, they
continue with another iteration.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Overview

1 Introduction

2 Preliminaries
EL++ profile
Normalization
Classification

3 Approach
Rules
Rule Processes

4 Optimizations

5 Results

6 Future Work

7 Conclusion

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Optimizations

Dynamic Load Balancing: Idle nodes take (steal) work from
busy nodes.

Rule Dependencies: Rule Ri need not be triggered again if
the output from rules it is depending on does not change.

Data Partitioning Strategy: Most of the data required for
rule application is available locally on each node.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Overview

1 Introduction

2 Preliminaries
EL++ profile
Normalization
Classification

3 Approach
Rules
Rule Processes

4 Optimizations

5 Results

6 Future Work

7 Conclusion

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Results

Implemented in Java and is called DistEL

Redis is the key-value store that was used

Available from http://github.com/raghavam/DistEL

Amazon’s EC2 m3.xlarge instances are used (4 cores, 15GB
RAM). 5GB given to JVM.

Machine configuration meant to reflect commodity hardware.

http://github.com/raghavam/DistEL

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Results

Ontology Before After

GO 87,137 868,996
SNOMED 1,038,481 14,796,555
SNOMEDx2 2,076,962 29,593,106
SNOMEDx3 3,115,443 44,389,657
SNOMEDx5 5,192,405 73,982,759
Traffic 7,151,328 21,840,440

Table: Number of axioms, before and after classification, in ontologies.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Results

Ontology ELK jCEL Snorocket Pellet HermiT FaCT++
GO 23.5 57.4 40.3 231.4 91.7 367.89
SNOMED 31.8 126.6 52.34 620.46 1273.7 1350.5
SNOMEDx2 77.3 OOMa OOMa OOMa OOMa OOMa

SNOMEDx3 OOMa OOMa OOMa OOMa OOMa OOMa

SNOMEDx5 OOMa OOMa OOMa OOMa OOMa OOMa

Traffic OOMb OOMc OOMc OOMb OOMb OOMc

Table: Classification times in seconds. OOMa: reasoner runs out of
memory. OOMb: reasoner runs out of memory during incremental
classification. OOMc: ontology too big for OWL API to load in memory.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Results

Ontology 8 nodes 16 nodes 24 nodes 32 nodes 64 nodes

GO 134.49 114.66 109.46 156.04 137.31
SNOMED 544.38 435.79 407.38 386.00 444.19

SNOMEDx2 954.17 750.81 717.41 673.08 799.07
SNOMEDx3 1362.88 1007.16 960.46 928.41 1051.80
SNOMEDx5 2182.16 1537.63 1489.34 1445.30 1799.13

Traffic 60004.54 41729.54 39719.84 38696.48 34200.17

Table: Classification time (in seconds) of DistEL

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Results

Node MB

R1 186.72
R2 0.81
R3 257.47
R4 0.79
R5 1970
R6 380.61
R7 0.79
R8 1470.00

Result 654.53
Total 4921.72

Table: Memory taken by Redis on each node for traffic data

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Results

Nodes Runtime Speedup

8 544.38 1.00
16 435.79 1.24
24 407.38 1.33
32 386.00 1.41
64 444.19 1.22

Table: Speedup achieved by DistEL on SNOMED CT

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Overview

1 Introduction

2 Preliminaries
EL++ profile
Normalization
Classification

3 Approach
Rules
Rule Processes

4 Optimizations

5 Results

6 Future Work

7 Conclusion

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Future Work

This is a work-in-progress and more work needs to be done
w.r.t performance improvements.

Explore other ontology partitioning strategies as well as rule
sets (ELK etc.).

Fine grained analysis on larger datasets with higher number of
nodes in the cluster.

Use multi-threading

Alternatives to Redis including custom data structures.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Overview

1 Introduction

2 Preliminaries
EL++ profile
Normalization
Classification

3 Approach
Rules
Rule Processes

4 Optimizations

5 Results

6 Future Work

7 Conclusion

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Conclusion

Existing reasoners were not able to classify traffic data and
other large ontologies.

DistEL, a distributed reasoner is able to classify the large
ontologies.

It shows good speedup with increase in the number of
machines in the cluster.

Introduction Preliminaries Approach Optimizations Results Future Work Conclusion

Thank You

Thank you

	Introduction
	Preliminaries
	E L++ profile
	Normalization
	Classification

	Approach
	Rules
	Rule Processes

	Optimizations
	Results
	Future Work
	Conclusion

