Distributed and Scalable OWL EL Reasoning

¹Raghava Mutharaju ¹Pascal Hitzler ¹Prabhaker Mateti ²Freddy Lécué

¹Wright State University, OH, USA.

²Smarter Cities Technology Centre, IBM Research, Dublin, Ireland.

12th Extended Semantic Web Conference (ESWC 2015), Portoroz, Slovenia

(中) (종) (종) (종) (종) (종)

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Overviev	W					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- 2 Preliminaries
 - $\bullet \ {\cal E\!L}^{++}$ profile
 - Normalization
 - Classification

3 Approach

- Rules
- Rule Processes
- Optimizations
- 5 Results

6 Future Work

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Overvie	N					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

2 Preliminaries

- \mathcal{EL}^{++} profile
- Normalization
- Classification

3 Approach

- Rules
- Rule Processes
- Optimizations
- 6 Results

6 Future Work

Conclusion

Introduction	Preliminaries	Approach 0000	Optimizations	Results	Future Work	Conclusion
Introduc	ction					

- Existing reasoners run on a single machine.
- They are constrained by the resources available to a single machine.
- Automatic generation of axioms result in very large ontologies.
 - streaming data (sensors, tweets)
 - text
- Additional axioms are generated during the reasoning process.
- Existing reasoners are overwhelmed by these large ontologies.

Introduction	Preliminaries	Approach 0000	Optimizations	Results	Future Work	Conclusion
Overview	N					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- 2 Preliminaries
 - $\bullet \ \mathcal{E\!L}^{++}$ profile
 - Normalization
 - Classification

3 Approach

- Rules
- Rule Processes
- Optimizations
- 6 Results

6 Future Work

Conclusion

- Most of description logic \mathcal{EL}^{++} is supported, which underlies OWL 2 EL profile.
- Axioms can have one of the following forms
 - $C \sqsubseteq D$, where C and D are defined by the grammar

$$C ::= A \mid \top \mid \bot \mid C \sqcap C \mid \exists r.C \mid \{a\}$$
$$D ::= A \mid \top \mid \bot \mid D \sqcap D \mid \exists r.D \mid \exists r.\{a\}$$

• $r_1 \circ \cdots \circ r_n \sqsubseteq r$

where A is a concept, r, r_i are roles, and a an individual.

• Axioms of the form $C \sqsubseteq \{a\}$ are **not** supported.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

All concept inclusions have one of the forms

- $A_1 \sqsubseteq B$
- $A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B$
- $A_1 \sqsubseteq \exists r.A_2$
- $\exists r.A_1 \sqsubseteq B$

All role inclusions have one of the forms

• $r_1 \circ r_2 \sqsubseteq r_3$

Introduction	Preliminaries ○○●	Approach 0000	Optimizations	Results	Future Work	Conclusion
Classific	cation					

- We focus on the reasoning task called *classification*.
- It is the computation of the complete subsumption hierarchy,
 i.e. all logical consequences of the form A ⊑ B involving all concept names and nominals A and B.

• We use a set of rules to classify a given \mathcal{EL}^{++} ontology.

Introduction	Preliminaries 000	Approach	Optimizations	Results	Future Work	Conclusion
Overview	N					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- \mathcal{EL}^{++} profile
- Normalization
- Classification

- 3 Approach
 - Rules
 - Rule Processes

Optimizations

6 Future Work

Introduction	Preliminaries	Approach ●○○○	Optimizations	Results	Future Work	Conclusion
Rules						

Rn	Input	Action
R1	$A \sqsubseteq B$	$U[B] \cup = U[A]$
R2	$A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B$	$U[B] \cup = U[A_1] \cap \cdots \cap U[A_n]$
R3	$A \sqsubseteq \exists r.B$	$R[r] \cup = \{(X,B) \mid X \in U[A]\}$
R4	$\exists r.A \sqsubseteq B$	$Q[r] \cup = \{(Y,B) \mid Y \in U[A]\}$
R5	R[r], Q[r]	$U[B] \cup = \{X \mid (X, Y) \in R[r]\}$
		and $(Y, B) \in Q[r]$ }
R6	R[r]	$U[\bot] \ \cup= \ \{X \mid (X,Y) \in R[r]$
		and $B \in U[\perp]$
R7	$r \sqsubseteq s$	$R[s] \cup = R[r]$
R8	$r \circ s \sqsubseteq t$	$R[t] \cup = \{(X,Z) \mid (X,Y) \in R[r]$
		and $(Y, Z) \in R[s]$ }

Table: Completion Rules

(ロ)、(型)、(E)、(E)、 E) の(の)

- Input ontology \mathcal{O} can be partitioned into eight mutually disjoint ontologies, $\mathcal{O} = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_8$
- Ontology \mathcal{O}_i is assigned to a subcluster (subset of machines in the cluster) SC_i
- Rule Ri must be applied only on \mathcal{O}_i
- From the available machines, eight subclusters are created, one for each rule.
- O_i is further divided up among the machines in the subcluster (not duplicated).

Introduction	Preliminaries	Approach ○0●0	Optimizations	Results	Future Work	Conclusion
Rule Pr	ocesses					

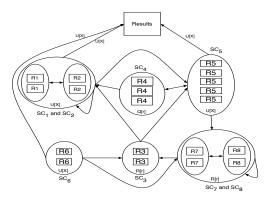


Figure: Node assignment to rules and dependency among the completion rules. For simplicity, only one node is shown to hold results.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Preliminaries 000	Approach ○○○●	Optimizations	Results	Future Work	Conclusion
Termina	ation					

repeat

```
K_i := apply Ri on O_i once;
broadcast(K_i);
nUpdates := barrier-sum-of K_i;
until nUpdates = 0;
Algorithm 1: Wrapper for Ri
```

- K_i is associated with each Rule Ri.
- *K_i* is the number of updates made to result/intermediate sets.
- Barrier synchronization is used in waiting for K_i from all Ri
- If no rule process made an update, they quit; otherwise, they continue with another iteration.

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Overviev	W					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Preliminaries

- \mathcal{EL}^{++} profile
- Normalization
- Classification

3 Approach

- Rules
- Rule Processes

Optimizations

6 Results

6 Future Work

7 Conclusion

Introduction	Preliminaries	Approach 0000	Optimizations	Results	Future Work	Conclusion
Optimiz	ations					

- **Dynamic Load Balancing:** Idle nodes take (steal) work from busy nodes.
- **Rule Dependencies:** Rule Ri need not be triggered again if the output from rules it is depending on does not change.
- Data Partitioning Strategy: Most of the data required for rule application is available locally on each node.

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Overvie	w					

2 Preliminaries

- \mathcal{EL}^{++} profile
- Normalization
- Classification

3 Approach

- Rules
- Rule Processes

Optimizations

6 Future Work

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Results						

- Implemented in Java and is called DistEL
- Redis is the key-value store that was used
- Available from http://github.com/raghavam/DistEL
- Amazon's EC2 m3.xlarge instances are used (4 cores, 15GB RAM). 5GB given to JVM.
- Machine configuration meant to reflect commodity hardware.

Introduction	Preliminaries	Approach 0000	Optimizations	Results	Future Work	Conclusion
Results						

Ontology	Before	After
GO	87,137	868,996
SNOMED	1,038,481	14,796,555
SNOMEDx2	2,076,962	29,593,106
SNOMED _x 3	3,115,443	44,389,657
SNOMED _{x5}	5,192,405	73,982,759
Traffic	7,151,328	21,840,440

Table: Number of axioms, before and after classification, in ontologies.

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Results						

Ontology	ELK	jCEL	Snorocket	Pellet	HermiT	FaCT++
GO	23.5	57.4	40.3	231.4	91.7	367.89
SNOMED	31.8	126.6	52.34	620.46	1273.7	1350.5
SNOMED _x 2	77.3	OOMª	OOMª	OOM ^a	OOMª	OOMª
SNOMED _x 3	OOM ^a	OOMª	OOMª	OOM ^a	OOMª	OOMª
SNOMED _{×5}	OOMª	OOMª	OOMª	OOM ^a	OOMª	OOMª
Traffic	OOM ^b	OOMc	OOMc	OOM ^b	OOM ^b	OOMc

Table: Classification times in seconds. OOM^a: reasoner runs out of memory. OOM^b: reasoner runs out of memory during incremental classification. OOM^c: ontology too big for OWL API to load in memory.

Introduction	Preliminaries	Approach 0000	Optimizations	Results	Future Work	Conclusion
Results						

Ontology	8 nodes	16 nodes	24 nodes	32 nodes	64 nodes
GO	134.49	114.66	109.46	156.04	137.31
SNOMED	544.38	435.79	407.38	386.00	444.19
SNOMEDx2	954.17	750.81	717.41	673.08	799.07
SNOMED _x 3	1362.88	1007.16	960.46	928.41	1051.80
SNOMED _{x5}	2182.16	1537.63	1489.34	1445.30	1799.13
Traffic	60004.54	41729.54	39719.84	38696.48	34200.17

Table: Classification time (in seconds) of DistEL

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Results						

Node	MB
R1	186.72
R2	0.81
R3	257.47
R4	0.79
R5	1970
R6	380.61
R7	0.79
R8	1470.00
Result	654.53
Total	4921.72

Table: Memory taken by Redis on each node for traffic data

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Results						

Nodes	Runtime	Speedup
8	544.38	1.00
16	435.79	1.24
24	407.38	1.33
32	386.00	1.41
64	444.19	1.22

Table: Speedup achieved by DistEL on SNOMED CT

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Overvie	W					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

2 Preliminaries

- \mathcal{EL}^{++} profile
- Normalization
- Classification

3 Approach

- Rules
- Rule Processes
- Optimizations
- 6 Results

6 Future Work

- This is a work-in-progress and more work needs to be done w.r.t performance improvements.
- Explore other ontology partitioning strategies as well as rule sets (ELK etc.).
- Fine grained analysis on larger datasets with higher number of nodes in the cluster.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

- Use multi-threading
- Alternatives to Redis including custom data structures.

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Overvie	W					

Introduction

2 Preliminaries

- \mathcal{EL}^{++} profile
- Normalization
- Classification

3 Approach

- Rules
- Rule Processes
- Optimizations
- 6 Results

6 Future Work

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Conclusion						

- Existing reasoners were not able to classify traffic data and other large ontologies.
- DistEL, a distributed reasoner is able to classify the large ontologies.

• It shows good speedup with increase in the number of machines in the cluster.

Introduction	Preliminaries 000	Approach 0000	Optimizations	Results	Future Work	Conclusion
Thank `	You					

Thank you

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ