Gambling pigeons: Primary rewards are not all that matter

Marcia Spetch, University of Alberta

Collaborators:

Matthew Brown, University of Alberta Roger Dunn, San Diego State University Elliot Ludvig, University of Warwick (poster) Christopher Madan, Boston College (poster) Margaret McDevitt, McDaniel College Neil McMillan, University of Alberta Jeffrey Pisklak, University of Alberta

My goal

1. Humans are not unique in making "irrational" choices.

2. Irrational choices may reflect basic learning and memory processes.

\$20 for sure

OR

50% Chance of \$40

Which option would you pick?

\$20 for sure

OR

50% Chance of \$40

Most people play it safe

Lose \$20 for sure

OR

50% Chance lose \$40

Now, which option would you pick?

Lose \$20 for sure

OR

50% Chance lose \$40

Most people take the chance

People are more risk seeking for losses than for gains.

"Reflection Effect" Kahneman & Tversky, 1979

What if outcomes are instead learned by reinforcement?

Ludvig & Spetch, 2011

Some doors lead to losses

Some doors are risky (outcome varies)

Some trials only give one door to ensure exposure to all contingencies

After learning, people choose between fixed and risky doors

Do people still show different risk preferences for gains and losses?

Yes... but preference is biased in the *opposite* way

Experienced choices: Gamble more on gain trials!

Ludvig & Spetch, 2011

Experienced choices: Gamble more on gain trials!

<u>Described choices:</u> Gambled more on loss trials

N=56 Same people, same session

Ludvig & Spetch, 2011

Described and experience-based decisions engage different brain regions

Description > Experience

• OFC (bilateral)

2 vIPFC (bilateral)

3 Superior Parietal Cortex (bilateral)

Experience > Description

4 Insula (bilateral)

Parahippocampal Cortex& Hippocampus (left)

Madan, Ludvig, Brown, Spetch, in prep (poster)

Why are people more risk seeking for gains than for losses in experience-based choice?

- Based on learning and memory
- Memories overweight the extremes

Extremes are overweighted in memory

First outcome to come to mind for risky door:

People also overestimate how often they got the extreme outcomes.

Madan Ludvig, Spetch, 2014

Why are people more risk seeking for gains than for losses in experience-based choice?

- Based on learning and memory
- Memories overweight the extremes
- Avoid worst outcome and seek best outcome
- Decision context determines which outcomes are the extremes (worst and the best)

Consider a loss choice: -20 vs 0/-40

If gain and loss trials mixed, then the risky 0/-40 option includes the worst possible outcome:

But in an all loss context, the same risky choice now includes the best possible outcome.

Decision context matters

Different groups

Ludvig Madan Spetch, 2014

Is this bias unique to humans?

Pigeon version of the door task

Used *relative* losses and gains:

Ludvig et al., 2014

Pigeons and people readily learned to choose high-value over low-value options

Blocks of 12 choices

Pigeons, like people, were riskier for highvalue choices than for low-value choices

So...

- Similar bias in pigeons and humans
- Monkeys also develop risk seeking for gains (e.g. Hayden & Platt, 2007)
- For humans, bias depends on decision context and memory for extremes

But, what if biases are "costly"?

With equal expected value, bias has no cost.

Sometimes people seek risk *despite* large cost – e.g., problem gamblers.

Do animals also show costly irrational choices?

Choice between 50% and 100% reinforcement

Choice between 50% and 100% reinforcement

Choice between 50% and 100% reinforcement

Unsignaled Procedure:

Procedure

Mixture of:

Single option trials – learn the outcomes

Choice trials – assess preference

Pigeons respond sensibly on unsignaled procedure

But small change in procedure...

Signaled Procedure: Outcome on 50% option *is* signaled during delay

Signals during delay lead pigeons to make bad choices!

Note: any choice of the 50% option is <u>costly</u> – gives only half as much food!

Dunn & Spetch, 1990

Suboptimal choice depends on contiguity between choice and signals on the 50% option

Suboptimal choice depends on contiguity between choice and signals on the 50% option

McDevitt et al., 1997

Suboptimal choice depends on contiguity between choice and signals on the 50% option

McDevitt et al., 1997

Pigeons show *extreme* suboptimal preference for signaled over unsignaled.

Choice between: signaled 20% vs. unsignaled 50% food

Stagner & Zentall, 2010

Other findings:

- Suboptimal choice increases with longer delays to food (Spetch et al., 1990)
- Suboptimal choice is correlated with impulsivity (Laude et al., 2014)
- Hungrier pigeons make more suboptimal choices (Laude et al., 2012)

Laude et al., 2012

Gambling humans (Molet et al., 2012)

Suboptimal Choice Choice ZORB ARTO P=.2 P=.8 P=.2 P=.8 or or 10 Generals 0 General 3 Generals 3 Generals

Expected Value = 2 Generals Killed

Expected Value = 3 Generals Killed

Students who gambled made more suboptimally choices (Molet et al., 2012)

SiGN Hypothesis: Choices reinforced by Signals for Good News (Ludvig et al poster)

- 1. Good news is rewarding when outcomes uncertain.
- 2. Signal on 100% option is redundant.
- Good news exerts control when primary reward is delayed.
- 4. "Bad news" has little punishing effect

(Belke & Spetch., 1994; Laude et al., 2014; McDevitt et al., 1997; Pisklak et al., submitted; Stagner et al., 2011)

Illustration of SiGN Hypothesis:

Signaled Procedure

Unsignaled Procedure

Food stimulus on 50% option signals "good news"

100% stimulus is redundant

Stimuli on 50% option are uninformative

Monkeys also choose signals. Bromberg-Martin & Hikosaka (2009).

Monkeys also choose signals. Bromberg-Martin & Hikosaka (2009).

Monkeys also choose signals. Bromberg-Martin & Hikosaka (2009).

Behavioral choice data Bromberg-Martin & Hikosaka (2009).

Midbrain Dopamine Response Bromberg-Martin & Hikosaka (2009)

Modelling Suboptimal Choice with RL?

Beierholm & Dayan, 2010 – RL model simulated monkey data

Does not predict suboptimal preference

Ludvig et al.(poster) – our first attempt to model with RL. Added "Good News bonus"

Promising but more testing needed

Conclusions

Choice does not simply follow primary rewards

Irrational preferences can arise from: overweighting of extremes attraction to "good news"

Sometimes these choices are very costly

Take home messages and speculations

Animal models useful

Adaptive processes not always "tuned" to specifics

Irrational choice (including gambling)
may reflect "fatal attractions" that are
adaptive in other contexts.

Thanks to

Research Assistants:

Josh Yong Nuha Mahdi Jason Long Ariel Greiner Pauline Kwong

Questions?