Reachability and Learning for Hybrid Systems

Kene Akametalu, Jaime Fisac, Claire Tomlin

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Air traffic in Oakland Center

- Safety critical: 1000 ft, 5 nmi separation
- Standard corridors of well-travelled routes

Controller must keep aircraft separated

Controller must keep aircraft separated

Growing numbers of UAV applications

[Google]

- 1. Safety
- 2. Simplicity
- 3. Ability to adapt to new information

[NASA]

- Collision avoidance system
- Forced landing system

Hybrid System Model

Outline

- Reachable sets for hybrid systems
 - Overview
 - Examples:
 - Collision avoidance
 - Mode sequencing
- Learning dynamic behavior safely
 - Overview
 - Examples:
 - Learning to fly

Backwards Reachable Set

All states for which, for all possible control actions, there is a disturbance action which can drive the system state into a region G(0) in time t

Reachability as game: disturbance attempts to force system into unsafe region, control attempts to stay safe

Reachable Set Propagation

Theorem [Computing G(t)]:

$$G(t) = \{x : J(x,t) < 0\}$$

where J(x,t) is the unique Crandall-Evans-Lions viscosity solution to:

$$-\frac{\partial J(x,t)}{\partial t} = \min\{0, \max_{u} \min_{d} \frac{\partial J(x,t)}{\partial x} f(x,u,d)\}$$

Reachable Set Propagation

Theorem [Computing G(t)]:

$$G(t) = \{x : J(x,t) < 0\}$$

where J(x,t) is the unique Crandall-Evans-Lions viscosity solution to:

$$-\frac{\partial J(x,t)}{\partial t} = \min\{0, \max_{u} \min_{d} \frac{\partial J(x,t)}{\partial x} f(x,u,d)\}$$

Reachable Set Propagation

Theorem [Computing G(t)]:

$$G(t) = \{x : J(x,t) < 0\}$$

where J(x,t) is the unique Crandall-Evans-Lions viscosity solution to:

$$-\frac{\partial J(x,t)}{\partial t} = \min\{0, \max_{u} \min_{d} \frac{\partial J(x,t)}{\partial x} f(x,u,d)\}$$

Invariance:

• If the set is controlled invariant for all t, any super zero level set is also invariant, and may be used for safety

Invariance:

 If the set is controlled invariant for all t, any super zero level set is also invariant, and may be used for safety

Invariance:

• If the set is controlled invariant for all t, any super zero level set is also invariant, and may be used for safety

Disturbance:

ullet And, if the disturbance d were known, the *optimal* reachable set could be computed

Partitions the state space

Example 1: Collision Avoidance

Pilots instructed to attempt to collide vehicles

[STARMAC: Stanford Testbed of Autonomous Rotorcraft for MultiAgent Control]

Backwards Reachable Set: Capture

Backwards Reachable Set

Capture property can also be encoded as a condition on the system's reachable set of states

$$-\frac{\partial J(x,t)}{\partial t} = \min\{0, \min_{u} \max_{d} \frac{\partial J(x,t)}{\partial x} f(x,u,d)\}$$

Mode sequencing and reach-avoid

Dealing with the curse of dimensionality

Convergent approximations

Aubin, Saint-Pierre...

Decompositions

Mitchell, Del Vecchio, Chen, Grizzle, Ames, Tabuada...

Approximate bisimulations

- Girard, Pappas, Tabuada...

Piecewise and multi-affine systems

- Morari, Bemporad, Borrelli, Krogh, Johansson, Rantzer, Belta, Kaynama, Oishi...

Ellipsoidal and polyhedral sets

- Kurzhanski, Kurzhanski, Varaiya, Girard, Frehse, Sankaranarayanan, Stipanovic...

Barrier certificates

Papachistodoulou, Julius, Parrilo, Lall, Topcu...

Monotone systems

Sontag, Del Vecchio, Arcak, Coogan

LTL specifications

Kress-Gazit, Raman, Murray, Wongpiromsarn, Belta...

Outline

- Reachable sets for hybrid systems
 - Overview
 - Examples:
 - Collision avoidance
 - Mode sequencing
- Learning dynamic behavior safely
 - Overview
 - Examples:
 - Learning to fly

Example 2: Platooning UAVs

Example 2: Platooning UAVs

Merging onto highway and joining platoon

Red vehicle merges onto highway

Blue vehicle joins red vehicle's platoon

Merging onto highway and joining platoon

4 vehicles join platoon following red vehicle

Intruder vehicle

Platoon responding to intruder (red vehicle)

Reachable sets for blue vehicle are shown

Blue vehicle must stay outside of all dotted boundaries

Example 3: Forced Landing System

Outline

- Reachable sets for hybrid systems
 - Overview
 - Examples:
 - Collision avoidance
 - Mode sequencing
- Learning dynamic behavior safely
 - Overview
 - Examples:
 - Learning to fly

Safety Simplicity

Ability to adapt to new information

Learn models from data...

... but stay safe while learning

Safety:

- A nominal model with error bounds
- Reachable sets computed to ensure safety in worst case

Performance:

- Use online learning to update model
- Cost function used to generate control action within the safe set

Example 4: Safe - Policy Gradient Reinforcement Learning

Learn to fly from scratch?

[PGSD: Kolter and Ng, 2009]

Example 4: Safe - Policy Gradient Reinforcement Learning

The quadrotor first:

Learn to fly from scratch?

After about 1 minute, it can roughly track the trajectory

Soon, it starts experimenting

drops

...but the safe controller steps in

[PGSD: Kolter and Ng, 2009]

Gaussian Processes (GP)

(a Gaussian distribution over functions)

$$\mathcal{D}(x) = [\bar{d}(x) - m\sigma(x), \bar{d}(x) + m\sigma(x)]$$

[GP: Rasmussen and Williams, 2006]

Online Disturbance Model Validation

Initialize active unsafe set = smallest candidate set

Online Disturbance Model Validation

- Initialize active unsafe set = smallest candidate set
- Repeat:
 - Measure disturbance
 - Validate measured disturbance at visited states against model
 - If model inaccuracy is detected, expand unsafe set
 - Update disturbance model

Online Disturbance Model Validation

- Initialize active unsafe set = smallest candidate set
- Repeat:
 - Measure disturbance
 - Validate measured disturbance at visited states against model
 - If model inaccuracy is detected, expand unsafe set
 - Update disturbance model

Example 5: Safe Learning

[Akametalu, Fisac, Zeilinger]

Example 5: Safe Learning

First computed model is locally inaccurate

System detects inconsistency, slightly contracts safe set

Tracking resumes after a better model is computed

[Akametalu, Fisac, Zeilinger]

Local Updates

- Instead of learning disturbance function globally:
 - Measure value function locally
 - Update value function locally

Local Updates using Temporal Difference Learning

Conservative Initialization

$$\frac{\partial J^{0}(x,t)}{\partial t} = -\min \left\{ 0, \max_{u \in \mathcal{U}} \min_{d \in \mathcal{D}} \frac{\partial J^{0}(x,t)}{\partial x}^{T} f(x,u,d) \right\}$$

Current Least Restrictive Control Law

$$u \in \begin{cases} \mathcal{U}, & \text{if } J^k(x_k) > 0 \\ u^*(x_k), & \text{otherwise} \end{cases}$$

Find Error

$$e = J^k(x_{k+1}) - J^k(x_k)$$

Update Online

$$J^{k+1}(x_k) \leftarrow \min\{\alpha e + J^k(x_k), l(x_k)\}\$$

[Akametalu 2015; TD Learning: Sutton 1988]

Local Updates using Temporal Difference Learning

Conservative Initialization

$$\frac{\partial J^{0}(x,t)}{\partial t} = -\min \left\{ 0, \max_{u \in \mathcal{U}} \min_{d \in \mathcal{D}} \frac{\partial J^{0}(x,t)}{\partial x}^{T} f(x,u,d) \right\}$$

Current Least Restrictive Control Law

$$u \in \begin{cases} \mathcal{U}, & \text{if } J^k(x_k) > 0 \\ u^*(x_k), & \text{otherwise} \end{cases}$$

Find Error

$$e = J^k(x_{k+1}) - J^k(x_k)$$

Update Online

$$J^{k+1}(x_k) \leftarrow \min\{\alpha e + J^k(x_k), l(x_k)\}\$$

[Akametalu 2015; TD Learning: Sutton 1988]

Example 6: Learning to Fly (in a confined space with unknown payload)

Example 6: Learning to Fly (in a confined space with unknown payload)

Conclusions and current work

- Analysis and control of hybrid systems
 - Safety, from reachability analysis
 - Simplicity, from hybrid system representation
 - UAV safety from reach-avoid games
 - Contrails: ATC game for Android

- Ability to learn from new information
 - Safe learning, Local updates
 - Forced Landing System

Conclusions and current work

- Analysis and control of hybrid systems
 - Safety, from reachability analysis
 - Simplicity, from hybrid system representation
 - UAV safety from reach-avoid games
 - Contrails: ATC game for Android

- Ability to learn from new information
 - Safe learning, Local updates
 - Forced Landing System

Thanks

- Kene Akametalu
- Anil Aswani (now at IEOR, UC Berkeley)
- Max Balandat
- Patrick Bouffard (now at Airware)
- Young Hwan Chang
- Mo Chen
- Jerry Ding (now at UTRC)
- Roel Dobbe
- Jaime Fisac
- Jeremy Gillula (now at EFF)
- Gabe Hoffmann (now at Zee.Aero)
- Qie Hu
- Haomiao Huang (now at Kuna Systems)
- Soulaiman Itani (now at Atheer Labs)
- Maryam Kamgarpour (now at ETHZ)
- Shahab Kaynama (now at ClearPath)
- Casey Mackin
- Frauke Oldewurtel
- Michael Vitus (now at hiDOF)
- Steve Waslander (now at ME, University of Waterloo)
- Insoon Yang
- Melanie Zeilinger
- Wei Zhang (now at ECE, Ohio State University)

NSF

ONR

NIH

NASA

AFOSR

- Hypothesized hybrid model for controlled aircraft
- Data is supportive; clustering suggests discrete set of maneuvers used

- Hypothesized hybrid model for controlled aircraft
- Data is supportive; clustering suggests discrete set of maneuvers used

- Hypothesized hybrid model for controlled aircraft
- Data is supportive; clustering suggests discrete set of maneuvers used

- Predict the maneuver given the airspace
 - Avoidance maneuvers plotted on learned conditional airspace distributions
 - How people sequence moving objects

Example 7: Catch me if you can

For reachability
$$\mathcal{U} = \mathcal{D} = [0, 2] \times [0, 2\pi]$$

Player a: (1) evade; (2) attack
$$\mathcal{D}_{sim} = [0,1] \times [0,2\pi]$$

Player b: (1) defend; (2) pursue
$$U_{sim} = [0, 2] \times [0, 2\pi]$$

Example 7: Catch me if you can

For reachability
$$\mathcal{U} = \mathcal{D} = [0, 2] \times [0, 2\pi]$$

Player a: (1) evade; (2) attack
$$\mathcal{D}_{sim} = [0, 1] \times [0, 2\pi]$$

Player b: (1) defend; (2) pursue
$$\mathcal{U}_{sim} = [0, 2] \times [0, 2\pi]$$

Example 7: Catch me if you can

For reachability
$$\mathcal{U} = \mathcal{D} = [0, 2] \times [0, 2\pi]$$

Player a: (1) evade; (2) attack
$$\mathcal{D}_{sim} = [0, 1] \times [0, 2\pi]$$

Player b: (1) defend; (2) pursue
$$U_{sim} = [0, 2] \times [0, 2\pi]$$

(with local updates)