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Anomalies in Choice Behavior

In experiments, subjects often make choices that violate
normative principles of rational choice

“Behavioral economics” literature proposes to model such
choices as the result of basing choice on some transformed
description of the situation, that introduces biases, rather than
on a correct description

But this raises a question: why should the brain produce and use
incorrect descriptions, rather than more accurate ones?
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Kahneman-Tversky (1979)

Problem
In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.

Problem
In addition to whatever you own, you have been given 2000. You are
now asked to choose between (a) losing 500 with certainty, and (b) a
gamble with a 50 percent chance of losing 1000 and a 50 percent
chance of losing nothing.
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Kahneman-Tversky (1979)

Problem
In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.

Majority of subjects [84%] choose (a)

Problem
In addition to whatever you own, you have been given 2000. You are
now asked to choose between (a) losing 500 with certainty, and (b) a
gamble with a 50 percent chance of losing 1000 and a 50 percent
chance of losing nothing.

Majority of subjects [69%] choose (b)
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Kahneman-Tversky (1979)

Puzzling aspects of this behavior:

1 In both cases, subjects are choosing between the same
probability distributions over final wealth levels:

(a) initial wealth + 1500 with certainty

VS

(b) 50 percent chance of initial wealth + 1000,
50 percent chance of initial wealth + 2000

Explanation in prospect theory: an “isolation effect” is
invoked to predict that subjects consider only gains or losses
that result from choice of (a) or (b), in isolation from context of
having a certain initial wealth

— two problems then treated as not equivalent
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Kahneman-Tversky (1979)

2 Even considering gains and losses in isolation: choices (a) and
(b) have equal expected value

— moreover, risk aversion in case of first problem, but
risk-seeking in second [“reflection effect”]

Explanation in prospect theory: subject evaluates not average of
true net gain x , but instead average of v(x), where “value
function” v(x) is a nonlinear transformation

— v(x) increasing but concave for x > 0 ⇒ risk-averse in
domain of gains

— v(x) increasing and convex for x < 0 ⇒ risk-seeking in
domain of losses

But why such a nonlinear transformation?
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A Proposed Explanation

Possible explanation, analogous to explanation of some kinds of
perceptual biases:

decisions are based on a noisy mental representation of the
decision situation, rather than a precisely correct representation

the representation is imprecise because of the finite processing
capacity of the circuits devoted to this task

“biases” may actually represent Bayes-optimal judgments,
conditional on the imperfect representation that is available as a
basis for the judgments

moreover, the particular nature of the imprecision in the mental
representation may be explained as an efficient use of finite
processing capacity [“efficient coding hypothesis”]
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Optimal Bias

How can biased judgments be optimal?

If judgment has to be based on a mental representation of the
situation that is stochastically related to the actual situation

— conditional probabilities p(s |x) of different subjective
representations s in the case of any actual state x—

then it is not possible, even in principle, to perfectly recover the
actual state from the subjective representation s

One can at best suppose that judgment is based on an optimal
estimate of the state, x̂(s)

— e.g., posterior mean of x , where posterior is conditional on
s (using Bayes’ Rule)
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Optimal Bias

There will then be a probability distribution of subjective
estimates x̂ associated with any actual state x (resulting from
randomness of the subjective representation s),

— and the estimates need not equal the actual value even on
average:

E[x̂ |x ] 6= x

Note that this would not be true if one assumed that the
subjective representation is simply a nonlinear transformation of
the state, such as the K-T value function

— if s = v(x), optimal estimate would be x̂ = v−1(s) = x for
all x
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Stochasticity of Mental Representation

Is there a reason to treat the subjective representation of a
situation as random?

In lab experiments, subjects’ choices often involve a random
element: same subject need not choose the same way, if same
options are repeated (sometimes only minutes later)

— yet probability of choice often varies systematically with
characteristics of options presented
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Mosteller and Nogee (1951)

AN EXPERIMENTAL MEASUREMENT OF UTILITY 

was determined (these are rounded val- 
ues). These, and the arbitrarily defined 
points [U(oo) = o utiles and U(-5S) = 
- i utiles] can be connected by straight- 
line segments to form the utility curve of 
a subject. In Figure 3, illustrations of the 
utility curves are given for a few sub- 
jects. For reasons of scale we have shown 
values for only a few different utile po- 
sitions. Logarithmic scales would be 
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FIG. 2.-In this graph the data of Table 8 for subject B-I, hand 5522i, are plotted to show how the in- 
difference point is actually obtained. 

somewhat misleading because some in- 
terest attaches to the curvature. 

It was not possible to secure utility 
curves as complete as those in Figure 3 
for all subjects. The behavior of one sub- 
ject in the pilot study was so erratic that 
no utility curve at all could be derived 
for him. For two student subjects in the 
experiment it was possible to derive only 
a short section of the curve. Their in- 
difference points for the high hands (i.e., 
those in which the probability of winning 
was small and which gave the values for 
IO, 20, and ioi utiles) were so high that 
the experimenters felt they could not af- 

ford to make the offers necessary to get 
the subjects to choose to play (if such 
offers existed). 

There was nothing in the experimental 
procedure which coerced any subject to 
play at any time. It was possible for a 
subject to take his dollar at the beginning 
of a session and not play, thus assuring 
himself of $i.oo. It is interesting that this 
never happened. 

One subject showed markedly super- 
stitious behavior toward one hand. He 
seldom played against it for any of the 
offers made, even though he would ac- 
cept the same, or even smaller, offers 
against a hand which was less likely to be 
beaten. When asked about this after the 
project was completed, the subject said 
that he had been aware of his behavior 
but that he simply felt that the particu- 
lar hand was unlucky for him and that he 
"just didn't like it." 

In Table 9 are the indifference offers 
corresponding to each utility. When 
these are graphed, a rough utility curve 

This content downloaded from 130.132.173.205 on Wed, 15 Jan 2014 18:21:44 PM
All use subject to JSTOR Terms and Conditions
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Stochasticity of Mental Representation

Is there a reason to treat the subjective representation of a
situation as random?

In lab experiments, subjects’ choices often involve a random
element: same subject need not choose the same way, if same
options are repeated (sometimes only minutes later)

— yet probability of choice often varies systematically with
characteristics of options presented

Theories like prospect theory make a deterministic prediction
about such choices

— goal is to correctly predict modal behavior

— but a more complete theory would explain the random
variation in choices as well
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Stochasticity of Mental Representation

Randomness of responses a common feature of perceptual
judgments

— Mosteller-Nogee figure analogous to a “psychometric
function”

Standard explanation (dating back to Fechner): judgment based
on a random “percept” s

— a distinct probability distribution p(s |x) for each true
stimulus magnitude x

— now understood in terms of stochastic responses of neurons
in cortical regions involved in sensory processing (described by
“tuning curves”)
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Optimal Bias

When should randomness of coding of a magnitude result in
bias in the average estimate of that magnitude, if optimal use is
made of the information that has been coded?

If estimate x̂(s) is the posterior mean, then

E[x̂ |x ] =
∫

x̃ π(x̃) L(x̃ |x) dx̃

where π(x) is the prior over possible values of the magnitude,
and

L(x̃ |x) ≡
∫

p(s |x̃)p(s |x)
p(s)

ds

is the average relative likelihood of state x̃ , averaging over the
subjective representations s produced by state x
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Optimal Bias

E[x̂ |x ] =
∫

x̃ π(x̃) L(x̃ |x) dx̃

So E[x̂ |x ] can differ from x either because

prior π(x̃) is not symmetrical around x , or

average relative likelihood L(x̃ |x) is not symmetrical around x

First effect: bias toward the prior mean, if average relative
likelihood is not very sharply peaked around x (i.e., coding is
imprecise)

— effect is stronger, the less the precision of the coding

— so a non-linear bias can result, if degree of precision of
coding varies with x
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Optimal Bias

E[x̂ |x ] =
∫

x̃ π(x̃) L(x̃ |x) dx̃

Second effect: even with uniform prior (or symmetric around x),
likelihood L(x̃ |x) can be asymmetric if degree of precision of
coding varies with x

— less precise coding as x increases ⇒ L(x̃ |x) larger for x̃ > x
than for x̃ < x to same extent

— results in bias toward the direction of less precise coding

So more complex biases result from non-uniformity of the
precision of coding over the range of x
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Efficient Coding

But why should there be non-uniformity in the precision of
coding?

This is required (quite generally) by the efficient coding
hypothesis:

— a finite capacity for making discriminations among
alternative situations is allocated in a way that is most useful
to the organism, for reducing average uncertainty about the
situation that exists on a given occasion
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Example: Discrimination of Orientation

Well-established that humans (and animals) can make sharper
discriminations between differing orientations that are
near-vertical or near-horizontal, than between oblique
orientations (“oblique effect”: Appelle, 1972)
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Orientation Discrimination
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of

62

Variable discrimination threshold in humans
(Girshick, Landy and Simoncelli, 2011; figure from Ganguli, 2012)
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Example: Discrimination of Orientation

Well-established that humans (and animals) can make sharper
discriminations between differing orientations that are
near-vertical or near-horizontal, than between oblique
orientations (“oblique effect”: Appelle, 1972)

Animal neurophysiology studies (e.g., of macaque V1) show this
explained by allocation of greater processing resources to the
former types of discriminations:

larger number of neurons with “preferred orientation” near
vertical or horizontal than near oblique angles

narrower “tuning widths” for neurons with preferred orientations
near vertical or horizontal

(Mansfield, 1974; Li et al., 2003; Wang et al., 2003)
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Orientation Discrimination
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of
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Density of orientation-tuned cells in macaque V1
(Mansfield, 1974; figure from Ganguli, 2012)
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Example: Discrimination of Orientation

This can be viewed as efficient given the fact that in both
natural and man-made environments, horizontally and vertically
oriented edges occur more frequently than oblique orientations
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Orientation Discrimination
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of
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Frequency distribution of edges in natural scenes
(Girshick, Landy and Simoncelli, 2011; figure from Ganguli, 2012)
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Orientation Discrimination
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of
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Regularities: (1) cell density ∼ environmental frequency
(2) discrimination threshold ∼ 1/frequency
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Example: Discrimination of Orientation

This can be viewed as efficient given the fact that in both
natural and man-made environments, horizontally and vertically
oriented edges occur more frequently than oblique orientations

Specifically, a neural coding scheme in which

cell density ∼ environmental frequency

width of tuning curve ∼ 1/frequency

and hence discrimination thresholds vary inversely with
environmental frequency, is efficient in the sense of maximizing
the mutual information between the stimulus and the neural
activation state (Ganguli and Simoncelli, 2012)
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Example: Discrimination of Orientation

This is equivalent to saying that the neural coding scheme
minimizes average posterior uncertainty about the stimulus
orientation, where uncertainty is measured using Shannon’s
entropy measure
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Biased Judgments of Orientation

This non-uniform allocation of processing resources has
additional implications, beyond the non-uniformity of
discrimination thresholds

— it also produces biases in perceived orientation of visual
stimuli

Using a mathematical description of the non-uniformity of

1 the prior probability distribution for stimulus orientations

2 the distribution of preferred orientations for neurons

3 the tuning widths of neurons with different preferred orientations

just mentioned, it is possible to derive the predicted average
Bayesian estimate of orientation E[θ̂|θ]
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Biased Judgments of Orientation

Result: estimates are biased away from “cardinal”
orientations (Wei and Stocker, 2012)
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Predicted Bias in Average Perceived Orientation

θ

E[θ̂|θ]

0° 45° 90° 135° 180°

bias alternates in sign; away from cardinal orientations
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Biased Judgments of Orientation

Result: estimates are biased away from “cardinal”
orientations (Wei and Stocker, 2012)

Tomassini et al. (2010) document this bias, in an experiment
that asks subjects to align dots with the perceived orientation
of oriented “Gabor patches”
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Tomassini et al. (2010)

button when it appeared to match that of the average orientation.
There was an inter-trial interval of 1 s. In a control experiment we
fixed the azimuth of the dots, and four naïve observers adjusted
the orientation of the Gabor array using the same two keys. Three
of these latter observers also participated in the main experiment.

Each Gabor in the array had a spatial frequency of 6.9 c/deg, a
spatial phase of either p/2 or �p/2 (randomly chosen for each Ga-
bor pattern), a space constant (r) of 0.072�, a mean luminance of
111 cd/m2, and a contrast of 0.99. Prior to each trial, the Gabor pat-
terns were placed, one at a time, in a 5.7� � 5.7� square. The place-
ment of each Gabor pattern was random, with the constraint that
no two Gabors could have centres closer than 0.43� (i.e. 6r). The
number of Gabor patterns required to fill each square was
132 ± 4. The entire array appeared within a Gaussian window,
the space constant of which was 1.4�. In separate blocks, we used
Gabor arrays having 0.1 s, 0.5 s, and response-terminated displays.
Only response-terminated displays were used in the control
experiment.

3. Results

3.1. Main experiment: response bias

In this study, we were primarily concerned with perceptual
biases. In particular, we wanted to know whether the variance of
orientations affected their apparent mean. However, what wemea-
sured were response biases, i.e. differences between the true mean
orientation and the azimuth of the comparison dots. (NB: We use
positive numbers to represent clockwise tilts. Thus positive re-
sponse biases indicate responses that are clockwise with respect
to unbiased responses.) Perceptual and response biases are not
necessarily the same; for example, observers could have a percep-
tual bias towards the cardinal axis, but a response bias in the direc-
tion of making the comparison dots less vertical than the gratings.
We shall start by analysing response biases only.

Our observers were remarkably precise in their estimates of ori-
entation. When all the data were pooled without regard to obser-
ver, display duration, orientation variance or mean physical tilt,
the standard deviation (SD) of response bias was just 9.8�. None-
theless, there were a few trials, even with long durations and
low orientation variance (as in Fig. 1a), for which the bias was
strangely large. Perhaps on these trials, observers mistakenly
clicked the mouse button, indicating alignment, before they had
actually moved the comparison dots from their random starting
positions. We decided to establish a rather conservative criterion
for removing these outliers from the data set. Thus we kept all data

within eight SDs of zero bias. With this criterion, exactly five trials
were discarded, and the SD of the remaining 4315 fell to 9.3�.

Each point in Fig. 2 shows the average response bias of our five
naïve observers, collapsed across display duration and orientation
variance. Error bars contain two standard errors (SEs), i.e.

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5

i¼1½varðilÞ=Ni;l�=5
q

, where il denotes observer i’s response bias

when the Gabor orientations were selected from a distribution
with mean l, and Ni,l represents the number of trials observer i
performed in that condition.

As a rule, these data points fall in the shaded regions of this fig-
ure, indicating a tendency to give the comparison dots an align-
ment that was more oblique than the mean orientation in the
stimulus array. Exceptions to this rule, which occur at mean phys-
ical tilts of ±55�with respect to vertical, suggest that biases toward
(or away from) the vertical and horizontal axes may not be equal.

The smooth curve in Fig. 2 satisfies the equation

rðs; a; yÞ ¼ asgnðsÞðsin½4jsj � sin�1ðyÞ� þ yÞ; ð1Þ

where s is the mean physical tilt of the stimulus and r is the re-
sponse bias. The parameter a determines the maximum bias, and
the parameter y determines how much stronger biases away from
the vertical axis are than biases away from the horizontal axis.
(NB: �1 6 y 6 1) When y = 0, these two biases are equal, and the

Fig. 2. Response bias versus tilt of the Gabor array. Results from the main
experiment have been collapsed across observer, display duration and orientation
variance to illustrate the general trend, which is that most data fall in the shaded
regions, indicating response biases away from the closest cardinal axis. In all
figures, each error bar contains two standard errors of its respective mean. In this
figure, the smooth curve adheres to Eq. (1), with parameter values a ¼ 2:1� and
y = 0.45.

Fig. 1. Example stimuli and typical result in the main experiment. Each little oriented pattern is a Gabor. In (a) the Gabors are tilted �75� ± 2� clockwise with respect to
vertical. On average, observers aligned the two white spots with an angle that was 4� farther from the nearest cardinal axis than the mean of this stimulus (i.e. �71�). In (b)
the tilts are �75� ± 14�. On average, observers were unbiased in their alignments of the two white spots with the mean of this array.

542 A. Tomassini et al. / Vision Research 50 (2010) 541–547

bias alternates in sign; away from cardinal orientations
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Efficient Coding and Value-Based Choice

Further conjecture: in value-based decisionmaking as well,
decisions are based on subjective representations of the
available options that are random, but in a way that is efficient

subject to an upper bound on processing capacity (degree of
differentiation of posteriors)

and for a particular frequency distribution of possible choice
situations (environment to which coding scheme is adapted)

Efficiency must however be defined in terms of the payoffs in a
particular class of decision problems: average reduction of
payoff-relevant uncertainty (need not mean entropy
reduction, as in infomax theory)
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Application to the KT Experiment

Modeling the choice situation in the KT experiment:

DM must make a judgment about the relative value of two
lotteries (a, b), after first receiving an initial amount w

Each lottery characterized by a payment xi in each of two
equi-probable states i = 1, 2

— hence DM’s situation in the event of a given choice
characterized by 3 numbers: w , x1, x2
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Application to the KT Experiment

Assume DM cares only about expected final wealth: values
options (if fully informed) at

v = w +
1

2
x1 +

1

2
x2

Suppose task is to estimate the relative value of option a,

va − vb

— more specifically, to produce an estimate e that minimizes

E[(e − (va − vb))2]

Woodford (Columbia) Efficient Coding June 2015 34 / 44



Application to the KT Experiment

Assume DM cares only about expected final wealth: values
options (if fully informed) at

v = w +
1

2
x1 +

1

2
x2

Suppose task is to estimate the relative value of option a,

va − vb

— more specifically, to produce an estimate e that minimizes

E[(e − (va − vb))2]

Woodford (Columbia) Efficient Coding June 2015 34 / 44



Efficient Coding in the KT Experiment

Assume DM must estimate relative value on the basis of a
subjective representation of the choice situation,

r = (r0; ra1 , ra2 ; rb1 , rb2 )

where the 5 elements of r correspond to observations of the 5
attributes x = (w ; xa1 , xa2 ; xb1 , xb2 ) of the choice situation

Attributes must be coded independently: coding described by
conditional probabilities

p0(r0|w), pmi (r
m
i |xmi ) for m = a, b; i = 1, 2

with conditional independence of each component of r
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Efficient Coding in the KT Experiment

Constraint on precision of coding:

let the information-processing resources required by a proposed
coding scheme be measured by the (Shannon) channel capacity
C (p) of the communication channel that produces output
signal r with probabilities p(r |x) when supplied with input x

— essentially, a measure of the [log of the] effective number of
categories of inputs that can be distinguished, but also defined
for “fuzzy” (probabilistic) categories

assume a finite upper bound

C (p0) + ∑
i

∑
m

C (pmi ) ≤ C̄

so that finer distinctions are possible in the case of any attribute
only at the cost of making coarser distinctions with regard to
some other attributes
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Efficient Coding in the KT Experiment

Finally, suppose that coding is optimized for a particular prior
over possible choice situations x:

the separate attributes w , xa1 , xa2 , xb1 , xb2 are independently
drawn from their respective prior distributions

prior distribution for each state-contingent payoff xmi is same

[numerical example: normal, mean zero]
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Implications of Efficient Coding

1 Relative value of two options independent of w ⇒ C0 = 0

no capacity used to represent value of w

hence choice must be a function only of distributions of gains
or losses

no need for a separate “isolation principle” to deliver this result:
follows from same efficient coding consideration as will be used
to explain risk attitudes
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Implications of Efficient Coding

2 Each state-contingent payoff xmi is coded using conditional
probabilities p(r |x) that solve

min E[(x̂(r)− x)2] s.t. C (p) ≤ C̄/4

Finite capacity ⇒ efficient coding makes E[x̂ |x ] a nonlinear
function of x
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Mean Estimated Value vs. True Value
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Explaining the KT Experiment

Prediction of the model proposed here:

DM should choose lottery a iff

x̂(ra1 ) + x̂(ra2 ) > x̂(rb1 ) + x̂(rb2 )

For each attribute, optimal estimate x̂(rmi ) and conditional
probabilities p(rmi |xmi ) are determined as above
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Mean Subjective Valuations of Lotteries

(a) has higher MSV when w = 1000, but (b) higher when w = 2000
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A Further Implication of the Theory

Viewing the phenomenon as resulting from finite-precision
coding, rather than an arbitrary fact about how different things
are valued, not only provides a functional explanation, but also
implies that it should be present to a greater or lesser extent
depending on degree of scarcity of processing capacity

Suggestive evidence:

DeMartino et al. (2006): significant correlation between
decreased asymmetry between gain and loss domains and higher
activity in rOFC and vmPFC

Porcelli and Delgado (2009): acute stress results in increased
asymmetry between gain and loss domains
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Conclusions

Important biases in choice behavior can result from decisions
based on imprecise subjective coding of features of the choice
situation

It may be possible to understand the form of such
representations using similar principles to those that explain
aspects of perceptual coding in sensory domains

— in particular, efficient allocation of scarce processing
capacity

This is one of the more obvious areas in which findings from
computational neuroscience can guide theory development in
economics
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