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Anomalies in Choice Behavior

@ In experiments, subjects often make choices that violate
normative principles of rational choice
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on a correct description

Woodford (Columbia) Efficient Coding June 2015 2 /44



Anomalies in Choice Behavior

@ In experiments, subjects often make choices that violate
normative principles of rational choice

@ “Behavioral economics” literature proposes to model such
choices as the result of basing choice on some transformed
description of the situation, that introduces biases, rather than
on a correct description

@ But this raises a question: why should the brain produce and use
incorrect descriptions, rather than more accurate ones?
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Kahneman-Tversky (1979)

Problem

In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.
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Kahneman-Tversky (1979)

Problem

In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.

Problem

In addition to whatever you own, you have been given 2000. You are
now asked to choose between (a) losing 500 with certainty, and (b) a
gamble with a 50 percent chance of losing 1000 and a 50 percent
chance of losing nothing.
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Kahneman-Tversky (1979)

Problem

In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.

Majority of subjects [84%] choose (a)

Problem

In addition to whatever you own, you have been given 2000. You are
now asked to choose between (a) losing 500 with certainty, and (b) a
gamble with a 50 percent chance of losing 1000 and a 50 percent
chance of losing nothing.

Majority of subjects [69%] choose (b)
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Kahneman-Tversky (1979)

Puzzling aspects of this behavior:

@ In both cases, subjects are choosing between the same
probability distributions over final wealth levels:
(a) initial wealth + 1500 with certainty
VS

(b) 50 percent chance of initial wealth 4+ 1000,
50 percent chance of initial wealth + 2000
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Kahneman-Tversky (1979)

Puzzling aspects of this behavior:

@ In both cases, subjects are choosing between the same
probability distributions over final wealth levels:

(a) initial wealth + 1500 with certainty
VS

(b) 50 percent chance of initial wealth 4+ 1000,
50 percent chance of initial wealth + 2000

@ Explanation in prospect theory: an “isolation effect” is
invoked to predict that subjects consider only gains or losses
that result from choice of (a) or (b), in isolation from context of
having a certain initial wealth
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Kahneman-Tversky (1979)

@ Even considering gains and losses in isolation: choices (a) and
(b) have equal expected value

— moreover, risk aversion in case of first problem, but
risk-seeking in second [ “reflection effect”|
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Kahneman-Tversky (1979)

@ Even considering gains and losses in isolation: choices (a) and
(b) have equal expected value

— moreover, risk aversion in case of first problem, but
risk-seeking in second [ “reflection effect”|

@ Explanation in prospect theory: subject evaluates not average of
true net gain x, but instead average of v(x), where "value
function” v(x) is a nonlinear transformation

— v(x) increasing but concave for x > 0 =- risk-averse in
domain of gains

— v(x) increasing and convex for x < 0 = risk-seeking in
domain of losses

Woodford (Columbia) Efficient Coding June 2015 6 /44



Kahneman-Tversky (1979)

@ Even considering gains and losses in isolation: choices (a) and
(b) have equal expected value

— moreover, risk aversion in case of first problem, but
risk-seeking in second [ “reflection effect”|

@ Explanation in prospect theory: subject evaluates not average of
true net gain x, but instead average of v(x), where "value
function” v(x) is a nonlinear transformation

— v(x) increasing but concave for x > 0 =- risk-averse in
domain of gains

— v(x) increasing and convex for x < 0 = risk-seeking in

domain of losses

@ But why such a nonlinear transformation?
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A Proposed Explanation

@ Possible explanation, analogous to explanation of some kinds of
perceptual biases:

o decisions are based on a noisy mental representation of the
decision situation, rather than a precisely correct representation

o the representation is imprecise because of the finite processing
capacity of the circuits devoted to this task
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decision situation, rather than a precisely correct representation

o the representation is imprecise because of the finite processing
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o “biases” may actually represent Bayes-optimal judgments,
conditional on the imperfect representation that is available as a
basis for the judgments
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A Proposed Explanation

@ Possible explanation, analogous to explanation of some kinds of
perceptual biases:

o decisions are based on a noisy mental representation of the
decision situation, rather than a precisely correct representation

o the representation is imprecise because of the finite processing
capacity of the circuits devoted to this task

o “biases” may actually represent Bayes-optimal judgments,
conditional on the imperfect representation that is available as a
basis for the judgments

e moreover, the particular nature of the imprecision in the mental
representation may be explained as an efficient use of finite
processing capacity [ “efficient coding hypothesis” ]
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Optimal Bias

@ How can biased judgments be optimal?
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Optimal Bias

@ How can biased judgments be optimal?

o If judgment has to be based on a mental representation of the
situation that is stochastically related to the actual situation

— conditional probabilities p(s|x) of different subjective
representations s in the case of any actual state x—

then it is not possible, even in principle, to perfectly recover the
actual state from the subjective representation s
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Optimal Bias

@ How can biased judgments be optimal?

o If judgment has to be based on a mental representation of the
situation that is stochastically related to the actual situation

— conditional probabilities p(s|x) of different subjective
representations s in the case of any actual state x—

then it is not possible, even in principle, to perfectly recover the
actual state from the subjective representation s

@ One can at best suppose that judgment is based on an optimal
estimate of the state, X(s)

— e.g., posterior mean of x, where posterior is conditional on
s (using Bayes' Rule)

Woodford (Columbia) Efficient Coding June 2015 8 /44



Optimal Bias

@ There will then be a probability distribution of subjective
estimates X associated with any actual state x (resulting from
randomness of the subjective representation s),

— and the estimates need not equal the actual value even on

average:
E[g|x] # x
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Optimal Bias

@ There will then be a probability distribution of subjective
estimates X associated with any actual state x (resulting from
randomness of the subjective representation s),

— and the estimates need not equal the actual value even on

average:
E[g|x] # x

@ Note that this would not be true if one assumed that the
subjective representation is simply a nonlinear transformation of
the state, such as the K-T value function

— if s = v(x), optimal estimate would be £ = v~1(s) = x for
all x
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Stochasticity of Mental Representation

@ Is there a reason to treat the subjective representation of a
situation as random?
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Stochasticity of Mental Representation

@ Is there a reason to treat the subjective representation of a
situation as random?

@ In lab experiments, subjects’ choices often involve a random
element: same subject need not choose the same way, if same
options are repeated (sometimes only minutes later)

— yet probability of choice often varies systematically with
characteristics of options presented

Woodford (Columbia) Efficient Coding June 2015 10 / 44



Mosteller and Nogee (1951)
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Stochasticity of Mental Representation

@ Is there a reason to treat the subjective representation of a
situation as random?

@ In lab experiments, subjects’ choices often involve a random
element: same subject need not choose the same way, if same
options are repeated (sometimes only minutes later)

— yet probability of choice often varies systematically with
characteristics of options presented

@ Theories like prospect theory make a deterministic prediction
about such choices

— goal is to correctly predict modal behavior

— but a more complete theory would explain the random
variation in choices as well
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Stochasticity of Mental Representation

@ Randomness of responses a common feature of perceptual
judgments

— Mosteller-Nogee figure analogous to a “psychometric
function”
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Stochasticity of Mental Representation

@ Randomness of responses a common feature of perceptual
judgments

— Mosteller-Nogee figure analogous to a “psychometric
function”
e Standard explanation (dating back to Fechner): judgment based

on a random “percept” s

— a distinct probability distribution p(s|x) for each true
stimulus magnitude x
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Stochasticity of Mental Representation

@ Randomness of responses a common feature of perceptual
judgments

— Mosteller-Nogee figure analogous to a “psychometric
function”
e Standard explanation (dating back to Fechner): judgment based

on a random “percept” s

— a distinct probability distribution p(s|x) for each true
stimulus magnitude x

— now understood in terms of stochastic responses of neurons

in cortical regions involved in sensory processing (described by
“tuning curves”)
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Optimal Bias

@ When should randomness of coding of a magnitude result in
bias in the average estimate of that magnitude, if optimal use is
made of the information that has been coded?
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Optimal Bias

@ When should randomness of coding of a magnitude result in
bias in the average estimate of that magnitude, if optimal use is
made of the information that has been coded?

o If estimate %(s) is the posterior mean, then
E[f|x] = /m(x) L(x|x) d%
where 77(x) is the prior over possible values of the magnitude,
and ~
L(%|x) = / p(slX)plslx) o
p(s)

is the average relative likelihood of state X, averaging over the
subjective representations s produced by state x
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Optimal Bias

E[f]x] = /)?n(f() L(x|x) d%
@ So E[X|x] can differ from x either because

e prior 77(X) is not symmetrical around x, or

o average relative likelihood L(X|x) is not symmetrical around x
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Optimal Bias

E[f]x] = /x 77(%) L(%|x) d%

@ So E[X|x] can differ from x either because
e prior 7t(X) is not symmetrical around x, or

o average relative likelihood L(X|x) is not symmetrical around x

o First effect: bias toward the prior mean, if average relative
likelihood is not very sharply peaked around x (i.e., coding is
imprecise)

— effect is stronger, the less the precision of the coding
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Optimal Bias

E[f]x] = /x 77(%) L(%|x) d%

@ So E[X|x] can differ from x either because
e prior 7t(X) is not symmetrical around x, or

o average relative likelihood L(X|x) is not symmetrical around x

o First effect: bias toward the prior mean, if average relative
likelihood is not very sharply peaked around x (i.e., coding is

imprecise)

— effect is stronger, the less the precision of the coding

— so a non-linear bias can result, if degree of precision of
coding varies with x
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Optimal Bias

E[f]x] = /x 77(%) L(%|x) d%

@ Second effect: even with uniform prior (or symmetric around x),
likelihood L(X|x) can be asymmetric if degree of precision of

coding varies with x

— less precise coding as x increases = L(X|x) larger for X > x
than for ¥ < x to same extent
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Optimal Bias

E[f]x] = /x 77(%) L(%|x) d%

@ Second effect: even with uniform prior (or symmetric around x),
likelihood L(X|x) can be asymmetric if degree of precision of
coding varies with x

— less precise coding as x increases = L(X|x) larger for X > x
than for ¥ < x to same extent

— results in bias toward the direction of less precise coding
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Optimal Bias

E[f]x] = /x 77(%) L(%|x) d%

@ Second effect: even with uniform prior (or symmetric around x),
likelihood L(X|x) can be asymmetric if degree of precision of
coding varies with x

— less precise coding as x increases = L(X|x) larger for X > x
than for ¥ < x to same extent

— results in bias toward the direction of less precise coding

@ So more complex biases result from non-uniformity of the
precision of coding over the range of x
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Efficient Coding

@ But why should there be non-uniformity in the precision of
coding?
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Efficient Coding

@ But why should there be non-uniformity in the precision of
coding?

@ This is required (quite generally) by the efficient coding
hypothesis:

— a finite capacity for making discriminations among
alternative situations is allocated in a way that is most useful
to the organism, for reducing average uncertainty about the
situation that exists on a given occasion
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Example: Discrimination of Orientation

@ Well-established that humans (and animals) can make sharper
discriminations between differing orientations that are
near-vertical or near-horizontal, than between oblique
orientations (“oblique effect”: Appelle, 1972)
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Orientation Discrimination
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Variable discrimination threshold in humans
(Girshick, Landy and Simoncelli, 2011; figure from Ganguli, 2012)
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Example: Discrimination of Orientation

@ Well-established that humans (and animals) can make sharper
discriminations between differing orientations that are
near-vertical or near-horizontal, than between oblique
orientations ( “oblique effect”: Appelle, 1972)

@ Animal neurophysiology studies (e.g., of macaque V1) show this
explained by allocation of greater processing resources to the
former types of discriminations:

o larger number of neurons with “preferred orientation” near
vertical or horizontal than near oblique angles

e narrower “tuning widths” for neurons with preferred orientations
near vertical or horizontal

(Mansfield, 1974; Li et al., 2003; Wang et al., 2003)
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Orientation Discrimination
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Density of orientation-tuned cells in macaque V1
(Mansfield, 1974; figure from Ganguli, 2012)
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Example: Discrimination of Orientation

@ This can be viewed as efficient given the fact that in both
natural and man-made environments, horizontally and vertically
oriented edges occur more frequently than oblique orientations
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Orientation Discrimination

5 0.012 N
E
T 0.006
o
o
0

0 45 90 135 180
Orientation (°)

Frequency distribution of edges in natural scenes
(Girshick, Landy and Simoncelli, 2011; figure-from Ganguli, 2012)
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Orientation Discrimination
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Example: Discrimination of Orientation

@ This can be viewed as efficient given the fact that in both
natural and man-made environments, horizontally and vertically
oriented edges occur more frequently than oblique orientations

@ Specifically, a neural coding scheme in which

o cell density ~ environmental frequency

e width of tuning curve ~ 1/frequency
and hence discrimination thresholds vary inversely with
environmental frequency, is efficient in the sense of maximizing

the mutual information between the stimulus and the neural
activation state (Ganguli and Simoncelli, 2012)
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Example: Discrimination of Orientation

@ This is equivalent to saying that the neural coding scheme
minimizes average posterior uncertainty about the stimulus
orientation, where uncertainty is measured using Shannon's
entropy measure
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Biased Judgments of Orientation

@ This non-uniform allocation of processing resources has
additional implications, beyond the non-uniformity of
discrimination thresholds

— it also produces biases in perceived orientation of visual
stimuli
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Biased Judgments of Orientation

@ This non-uniform allocation of processing resources has
additional implications, beyond the non-uniformity of
discrimination thresholds

— it also produces biases in perceived orientation of visual
stimuli
@ Using a mathematical description of the non-uniformity of

@ the prior probability distribution for stimulus orientations
@ the distribution of preferred orientations for neurons

© the tuning widths of neurons with different preferred orientations

just mentioned, it is possible to derive the predicted average
Bayesian estimate of orientation E[0|6]
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Biased Judgments of Orientation

@ Result: estimates are biased away from “cardinal”
orientations (Wei and Stocker, 2012)

Woodford (Columbia) Efficient Coding June 2015 28 / 44



Predicted Bias in Average Perceived Orientation

E[9)0] :

R ) 3 * 4
0 45" 90’ 135 180°
8
bias alternates in sign; away from cardinal orientations
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Biased Judgments of Orientation

@ Result: estimates are biased away from “cardinal”
orientations (Wei and Stocker, 2012)

@ Tomassini et al. (2010) document this bias, in an experiment
that asks subjects to align dots with the perceived orientation
of oriented “Gabor patches”
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Tomassini et al. (2010)

Bias (deg CW)

-90 -45 0 45 90
Mean of Gabors (deg CW of Vertical)

bias alternates in sign; away from cardinal orientations
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Efficient Coding and Value-Based Choice

@ Further conjecture: in value-based decisionmaking as well,
decisions are based on subjective representations of the
available options that are random, but in a way that is efficient

e subject to an upper bound on processing capacity (degree of
differentiation of posteriors)

e and for a particular frequency distribution of possible choice
situations (environment to which coding scheme is adapted)
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Efficient Coding and Value-Based Choice

@ Further conjecture: in value-based decisionmaking as well,
decisions are based on subjective representations of the
available options that are random, but in a way that is efficient

e subject to an upper bound on processing capacity (degree of
differentiation of posteriors)

e and for a particular frequency distribution of possible choice
situations (environment to which coding scheme is adapted)

o Efficiency must however be defined in terms of the payoffs in a
particular class of decision problems: average reduction of
payoff-relevant uncertainty (need not mean entropy
reduction, as in infomax theory)
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Application to the KT Experiment

Modeling the choice situation in the KT experiment:

@ DM must make a judgment about the relative value of two
lotteries (a, b), after first receiving an initial amount w
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Application to the KT Experiment

Modeling the choice situation in the KT experiment:

@ DM must make a judgment about the relative value of two
lotteries (a, b), after first receiving an initial amount w

@ Each lottery characterized by a payment x; in each of two
equi-probable states i = 1,2

— hence DM'’s situation in the event of a given choice
characterized by 3 numbers: w, x1, xo
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Application to the KT Experiment

@ Assume DM cares only about expected final wealth: values
options (if fully informed) at
1

1
V:W+§X1+§X2
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Application to the KT Experiment

@ Assume DM cares only about expected final wealth: values
options (if fully informed) at
1

1
V:W+§X1+§X2

@ Suppose task is to estimate the relative value of option a,

v — b

— more specifically, to produce an estimate e that minimizes
E[(e — (v = v"))?]
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Efficient Coding in the KT Experiment

@ Assume DM must estimate relative value on the basis of a
subjective representation of the choice situation,

r=(ro;rf, r3; it r?)

where the 5 elements of r correspond to observations of the 5

attributes x = (w; x{, x3; x{’, xzb) of the choice situation
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Efficient Coding in the KT Experiment

@ Assume DM must estimate relative value on the basis of a
subjective representation of the choice situation,

r=(ro;rf, r3; it r?)

where the 5 elements of r correspond to observations of the 5

attributes x = (w; x{, x3; x{’, xzb) of the choice situation

@ Attributes must be coded independently: coding described by
conditional probabilities

po(ro|w), pm(rx™) form=a,b;i=1,2
with conditional independence of each component of r
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Efficient Coding in the KT Experiment

@ Constraint on precision of coding:

o let the information-processing resources required by a proposed
coding scheme be measured by the (Shannon) channel capacity
C(p) of the communication channel that produces output
signal r with probabilities p(r|x) when supplied with input x

— essentially, a measure of the [log of the] effective number of
categories of inputs that can be distinguished, but also defined
for “fuzzy" (probabilistic) categories
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Efficient Coding in the KT Experiment

@ Constraint on precision of coding:

e let the information-processing resources required by a proposed
coding scheme be measured by the (Shannon) channel capacity
C(p) of the communication channel that produces output
signal r with probabilities p(r|x) when supplied with input x

— essentially, a measure of the [log of the] effective number of
categories of inputs that can be distinguished, but also defined
for “fuzzy" (probabilistic) categories

e assume a finite upper bound
Clp) + ). ) CpM) < C
i m

so that finer distinctions are possible in the case of any attribute
only at the cost of making coarser distinctions with regard to

some other attributes
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Efficient Coding in the KT Experiment

e Finally, suppose that coding is optimized for a particular prior
over possible choice situations x:

o the separate attributes w, x, x3, x2, x? are independently

drawn from their respective prior distributions

e prior distribution for each state-contingent payoff x/" is same

[numerical example: normal, mean zero]

Woodford (Columbia) Efficient Coding June 2015 37 / 44



Implications of Efficient Coding

© Relative value of two options independent of w = Cp =0

e no capacity used to represent value of w

e hence choice must be a function only of distributions of gains
or losses
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Implications of Efficient Coding

© Relative value of two options independent of w = Cp =0

e no capacity used to represent value of w
e hence choice must be a function only of distributions of gains

or losses

e no need for a separate “isolation principle” to deliver this result:
follows from same efficient coding consideration as will be used
to explain risk attitudes
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Implications of Efficient Coding

© Each state-contingent payoff x/” is coded using conditional
probabilities p(r|x) that solve

min E[(%(r) — x)?] st. C(p)<C/4
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Implications of Efficient Coding

© Each state-contingent payoff x/” is coded using conditional
probabilities p(r|x) that solve

min E[(%(r) — x)?] st. C(p)<C/4

o Finite capacity = efficient coding makes E[%|x] a nonlinear
function of x
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Mean Estimated Value vs. True Value
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Explaining the KT Experiment

Prediction of the model proposed here:

@ DM should choose lottery a iff

R(rf) +2(3) > %(r) + 2(r2)
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Explaining the KT Experiment

Prediction of the model proposed here:

@ DM should choose lottery a iff

R(rf) +2(3) > %(r) + 2(r2)

@ For each attribute, optimal estimate X(r/”) and conditional
probabilities p(r/"|x™) are determined as above
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Mean Subjective Valuations of Lotteries

E[3]
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(a) has higher MSV when w = 1000, but (b) higher when w = 2000
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A Further Implication of the Theory

@ Viewing the phenomenon as resulting from finite-precision
coding, rather than an arbitrary fact about how different things
are valued, not only provides a functional explanation, but also
implies that it should be present to a greater or lesser extent
depending on degree of scarcity of processing capacity
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A Further Implication of the Theory

@ Viewing the phenomenon as resulting from finite-precision
coding, rather than an arbitrary fact about how different things
are valued, not only provides a functional explanation, but also
implies that it should be present to a greater or lesser extent
depending on degree of scarcity of processing capacity

@ Suggestive evidence:
o DeMartino et al. (2006): significant correlation between

decreased asymmetry between gain and loss domains and higher
activity in rOFC and vmPFC
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A Further Implication of the Theory

@ Viewing the phenomenon as resulting from finite-precision
coding, rather than an arbitrary fact about how different things
are valued, not only provides a functional explanation, but also
implies that it should be present to a greater or lesser extent
depending on degree of scarcity of processing capacity

@ Suggestive evidence:

o DeMartino et al. (2006): significant correlation between
decreased asymmetry between gain and loss domains and higher
activity in rOFC and vmPFC

e Porcelli and Delgado (2009): acute stress results in increased
asymmetry between gain and loss domains
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Conclusions

@ Important biases in choice behavior can result from decisions
based on imprecise subjective coding of features of the choice
situation

@ It may be possible to understand the form of such
representations using similar principles to those that explain
aspects of perceptual coding in sensory domains

— in particular, efficient allocation of scarce processing
capacity
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based on imprecise subjective coding of features of the choice
situation

@ It may be possible to understand the form of such
representations using similar principles to those that explain
aspects of perceptual coding in sensory domains

— in particular, efficient allocation of scarce processing
capacity

@ This is one of the more obvious areas in which findings from
computational neuroscience can guide theory development in
economics
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