The Online Discovery Problem and
Its Application to Lifelong Reinforcement Learning

Emma Brunskill Lihong Li

Carnegie Mellon University Microsoft Research

Multi-disciplinary Conference on Reinforcement Learning and Decision Making 2015
Edmonton, AB, Canada

Full version to be available on arXiv



Lifelong Learning Example: Intelligent Tutoring Systems




Lifelong Learning Example: Intelligent Tutoring Systems

State = (courses taken, skills mastered, grades, ...)




Lifelong Learning Example: Intelligent Tutoring Systems

Action € { test skill,
teach new concept,
review old lectures,

State = (courses taken, skills mastered, grades, ...)




Lifelong Learning Example: Intelligent Tutoring Systems

Action € { test skill,
teach new concept,
review old lectures,




Lifelong Learning Example: Intelligent Tutoring Systems

Action € { test skill,
teach new concept,
review old lectures,




Lifelong Learning Example: Intelligent Tutoring Systems

Action € { test skill,
teach new concept,
review old lectures,

State = (courses taken, skills mastered, grades, ...)

4 )

! = f’%ﬁﬂﬁ*ﬁ% .:.gt ¥ ,;IEI
\ ‘-lg (L)) e ) e
\ ey - L)

SRy
Aid

\_ Uy

How to benefit from past teaching experience?

2



Lifelong Learning Example: Intelligent Tutoring Systems

How to teach Alice to benefit future students?

Action € { test skill,
teach new concept,
review old lectures,
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Task as Finite Markov Decision Process (MDP)
M =(S,AP,R,y)

State / \
space Action
space
Transition
probabilities

Discount

Reward factorin (0,1)
function

Elr:] = R(s¢, at) Sev1 ~ P( s, ap)




A Class of Lifelong RL Problems

 Given (known): S (finite), A4 (finite), y € (0,1)
e Unknown: M = {M!, M?, .. M‘}
VM € M, M = <S,A,PM,RM,)/>

Fort=1,2,..,T
e Environment chooses an unknown M; € M
e Agent acts in M, for H steps

Note: Many previous works on LLRL
with different setups
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 Given (known): S (finite), A4 (finite), y € (0,1)
e Unknown: M = {M!, M?, .. M‘}
VM € M, M = (S,A,PM,RM,)/>

Fort=1,2,..,T
e Environment chooses an unknown M; € M
e Agent acts in M, for H steps

Note: Many previous works on LLRL
with different setups

Finite S and 4

5

Finitely many MDPs with
“large” model differences

Examples
e Student types w/ varying
learning rates [Liu&Koedinger]
‘e User types in human robot
i interaction [Nikolaidis et al.] |
e User goal recognition for
task assistance [Fern et al.]
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Two Kinds of Exploration

M: set of discovered types before t
)

/ \ Current task

EEEEEN Mt—l >

When in M;...
0 Within-task learning:
e Goal: maximize reward in M,

e Explore promising states in M, until policy is e-optimal

O Cross-task knowledge transfer:

e Goal: maximize reward in M;, 4, ... w/ transferable info.
e Explore possibly all states in M, to discover novel types

M;

U

—

Cross-task E/E tradeoff
over
within-task E/E tradeoff



The Online Discovery Problem:
Abstraction of Cross-task Exploration

Environment has an unknown set M = {M*! M?, ..., M}
Agent starts with M = ¢

Fort=1,2,..,T
. EM
e Agent chooses to explore (A; = 1) or exploit (4; = 0)
e IfA4, =1, M < MU {M,}
* Loss to agent

Agent aims to minimize total loss
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The Online Discovery Problem:
Abstraction of Cross-task Exploration

1, MMMM<-MMMMU{MtMMMtttMt}

1) orexploit (At A4 Attt At =0)

MM

Environment has an unknown set M = {M*! M?, ..., M}

Agent starts with M = ¢

Fort =1,2,....T
e L 0SS to Asent (po < pq < pr K pg)

A =0 :
e Agent¢ ° L 3 1) or exploit (4; = 0)
. If A Ar=1 P1 P2 po: successful transfer
— vVl < |V % _
¢ = LT MY M p3: negative transfer

Agent aims to minimize total loss



Explore-First Algorithm

Stochastic assumptions:
M; ~ u i.i.d. overM, and u,, = Ir\/lnell{l/l u(M)

 Action selection
1 = 1 ift<E (Exploration phase)
7|0 otherwise (Exploitation phase)

e = 0(uy log(CpyT)), then

AverageLoss < OptLoss + ﬁlog(

TCHmPS)
P1



Explore-First Algorithm
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M; ~ u iid. over M, and u,, = I\I/TIIEII\I}[ u(M)
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©7 |10 otherwise (Exploitation phase)
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AverageLoss < OptLoss +_—— log (_pl )

1 TCumps
AverageLoss < OptLoss + _—— log (_pl )



Forced-Exploration Algorithm

No stochastic assumption (M; can even be generated adversarially!)
. =1y, =--=nr >0

e Algorithm chooses action
A; ~ Bernoulli(n;)

 Theorem: If choose n, = 1/4/t, then

AverageLoss < OptLoss + \/i? (2p1 + Cp3)
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nizn2mn22yp2=2.=2n7lmpn777n7 >0

No stochastic assumption (M, can even be generated adversarially!)

e Algorithm chooses action
At~ ttt ~ Bernoulli(n;)

AverageLoss < OptLoss + — (2p; + Cp3)
8 p Nea P1 P3

» Theorem: If choose 1, = 1/+/t, then \ Y )

1
AverageLoss < OptLoss + = (2p; + Cp3) 1
ViNe have an O (\/_T) lower bound

=» Forced-Exploration is essentially optimal
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A Litfelong RL Algorithm based on FE

Input: S, A,y
Initia

= ttt = 1if data shows M; is novel



Sample Complexity of Exploration

Sample complexity of algorithm A (given €) [Kakade]

Number of steps where QAt(st, a,) < Q*(sg,a;) — €
Measures number of e-mistakes made by the algorithm
. long enough, with high prob.

. . ~(CD
SampleComplexity(Our Algorithm) = O FT + SANNT

In contrast, single-task RL's Sample Complexity is Q(SAT)
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Experiment

Start state Rewarding state Even r/nore rewarding state

N 4- i N
\4
S

M1 M? M3 M*

4 possible MDPs with Algorithms for comparison

* noisy state transitions e Forced-exploration [this work]

e different rewarding states e Explore-first [Brunskill-Li]

e Hierarchical Multi-task Learning
[Wilson et al.]



Stochastic Setting

with small u,,
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Adversarial Setting with Changing Distribution
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Conclusions

* Two kinds of exploration needed in LLRL
* Online discovery problem as abstraction for cross-task exploration

* A new lifelong RL algorithm based on optimal ODP algorithm
0 Provably sample complexity better than single-task RL
O Proof-of-concept experiments demonstrating desired behavior

Future work
* Function approximation

e Use of prior information
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