The Online Discovery Problem and Its Application to Lifelong Reinforcement Learning

Emma Brunskill

Lihong Li

Carnegie Mellon University

Microsoft Research

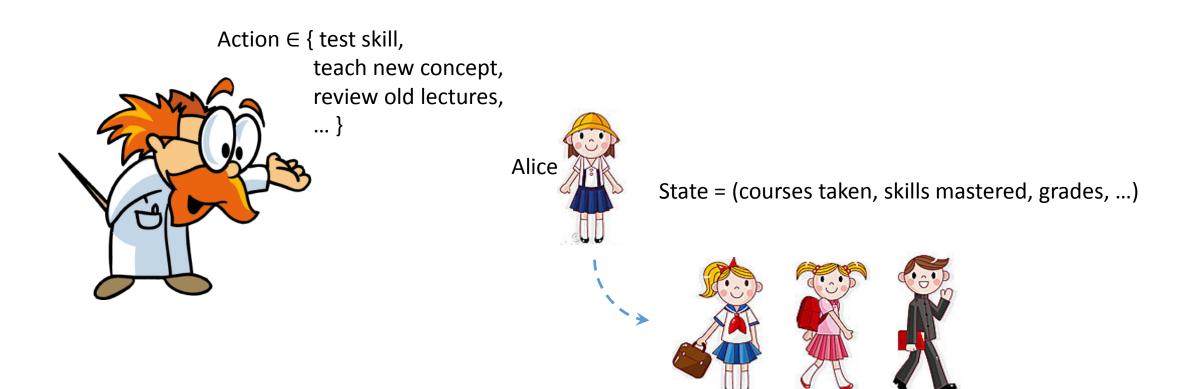
Multi-disciplinary Conference on Reinforcement Learning and Decision Making 2015 Edmonton, AB, Canada

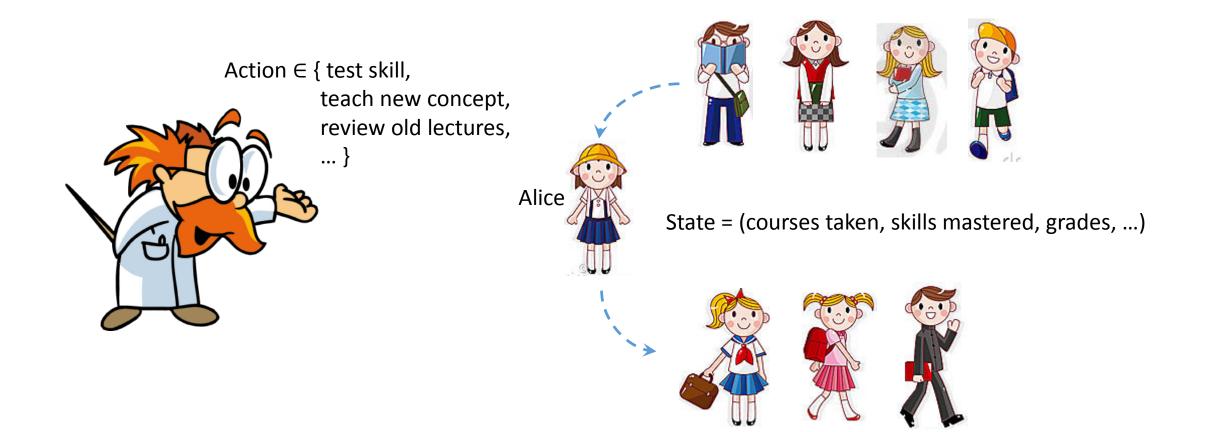
Full version to be available on arXiv

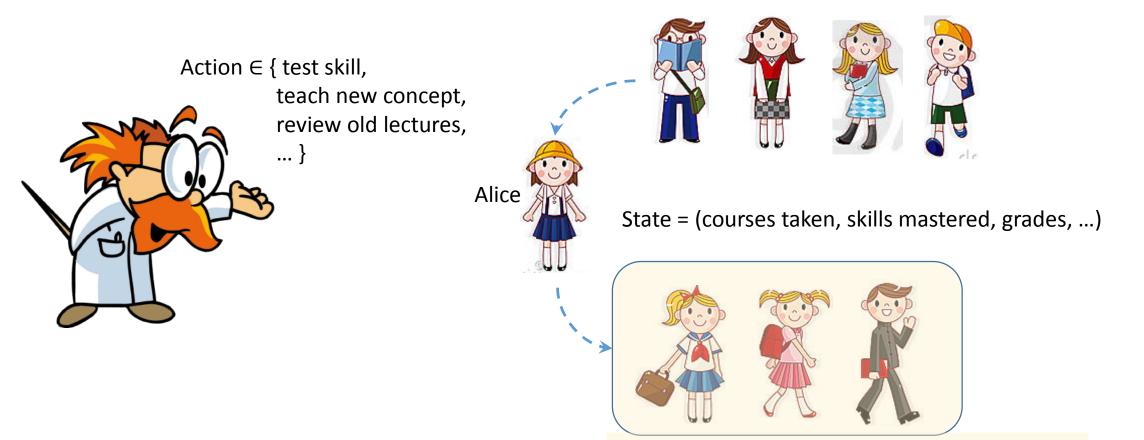
State = (courses taken, skills mastered, grades, ...)

ice

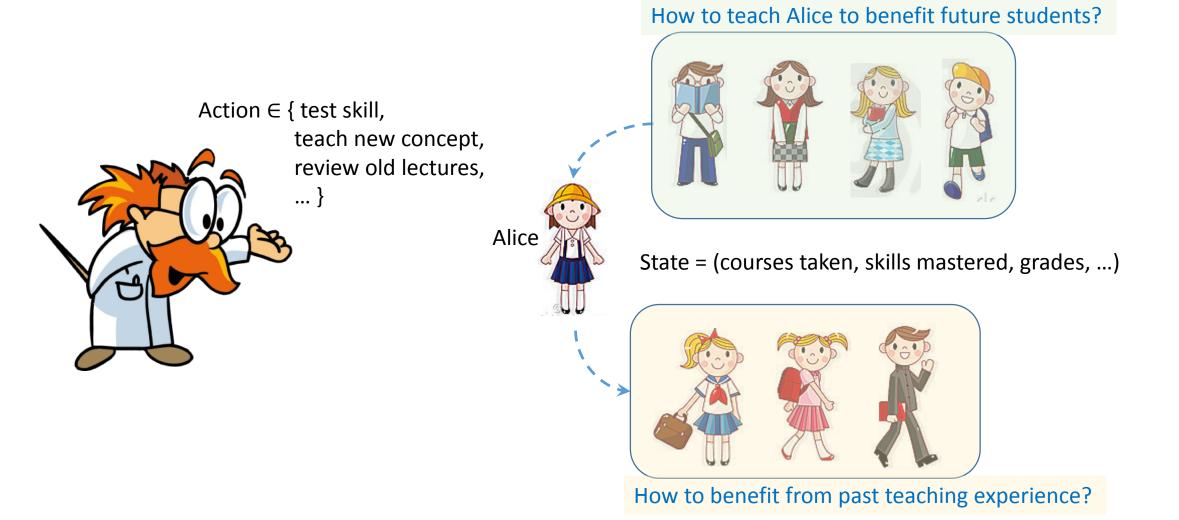
State = (courses taken, skills mastered, grades, ...)



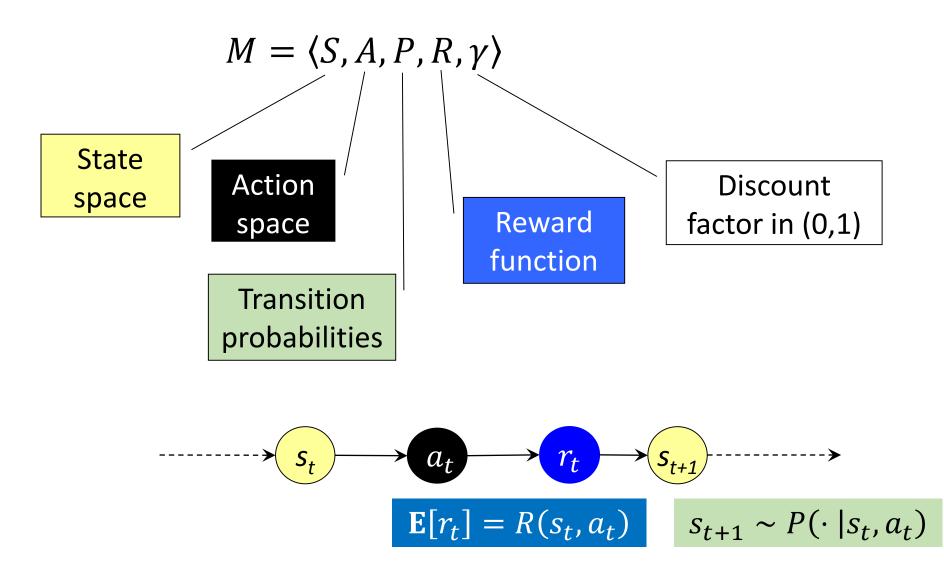




How to benefit from past teaching experience?



Task as Finite Markov Decision Process (MDP)



A Class of Lifelong RL Problems

- Given (known): *S* (finite), *A* (finite), $\gamma \in (0,1)$
- Unknown: $\mathbf{M} = \{M^1, M^2, \dots, M^C\}$ $\forall M \in \mathbf{M}, M = \langle S, A, P_M, R_M, \gamma \rangle$

For t = 1, 2, ..., T

- Environment chooses an unknown $M_t \in \mathbf{M}$
- Agent acts in M_t for H steps

Note: Many previous works on LLRL with different setups

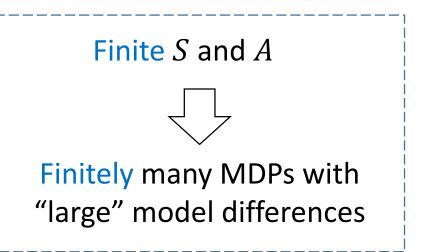
A Class of Lifelong RL Problems

- Given (known): *S* (finite), *A* (finite), $\gamma \in (0,1)$
- Unknown: $\mathbf{M} = \{M^1, M^2, \dots, M^C\}$ $\forall M \in \mathbf{M}, M = \langle S, A, P_M, R_M, \gamma \rangle$

For t = 1, 2, ..., T

- Environment chooses an unknown $M_t \in \mathbf{M}$
- Agent acts in M_t for H steps

Note: Many previous works on LLRL with different setups



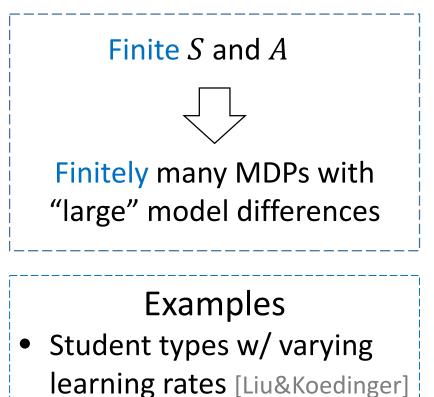
A Class of Lifelong RL Problems

- Given (known): *S* (finite), *A* (finite), $\gamma \in (0,1)$
- Unknown: $\mathbf{M} = \{M^1, M^2, \dots, M^C\}$ $\forall M \in \mathbf{M}, M = \langle S, A, P_M, R_M, \gamma \rangle$

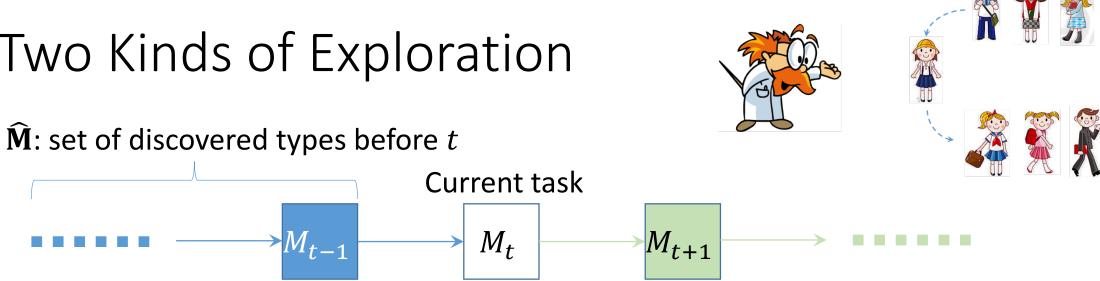
For t = 1, 2, ..., T

- Environment chooses an unknown $M_t \in \mathbf{M}$
- Agent acts in M_t for H steps

Note: Many previous works on LLRL with different setups



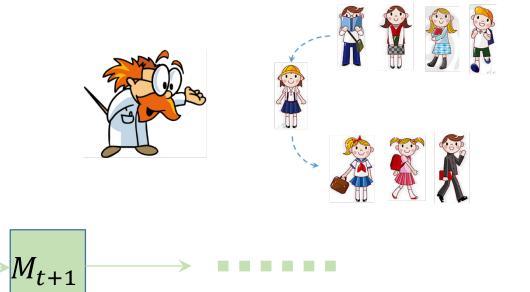
- User types in human robot interaction [Nikolaidis et al.]
- User goal recognition for task assistance [Fern et al.]



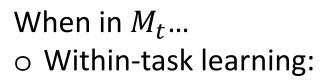
 M_{t-1}

Current task

 M_t



 $\widehat{\mathbf{M}}$: set of discovered types before t



• Cross-task knowledge transfer:

 M_{t-1}

Current task M_{t+1}

 $\widehat{\mathbf{M}}$: set of discovered types before t

When in M_t ...

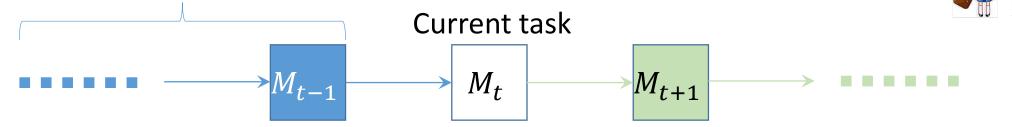
• Within-task learning:

- Goal: maximize reward in M_t
- Explore promising states in M_t until policy is ϵ -optimal

 M_t

• Cross-task knowledge transfer:

 $\widehat{\mathbf{M}}$: set of discovered types before t

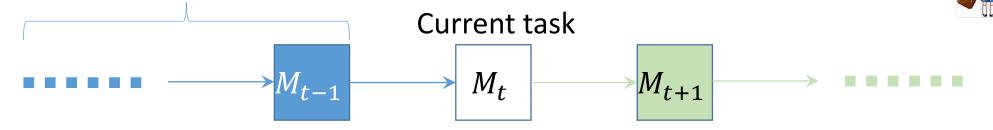


When in M_t ...

• Within-task learning:

- Goal: maximize reward in M_t
- Explore promising states in M_t until policy is ϵ -optimal
- o Cross-task knowledge transfer:
 - Goal: maximize reward in M_{t+1} , ... w/ transferable info.
 - Explore possibly all states in M_t to discover novel types

 $\widehat{\mathbf{M}}$: set of discovered types before t



When in M_t ...

• Within-task learning:

- Goal: maximize reward in M_t
- Explore promising states in M_t until policy is ϵ -optimal
- o Cross-task knowledge transfer:
 - Goal: maximize reward in M_{t+1} , ... w/ transferable info.
 - Explore possibly all states in M_t to discover novel types

Cross-task E/E tradeoff over within-task E/E tradeoff

Environment has an unknown set $\mathbf{M} = \{M^1, M^2, ..., M^C\}$ **Agent** starts with $\widehat{\mathbf{M}} = \emptyset$

For t = 1, 2, ..., T

$\in \mathbf{M}$

• Agent chooses to explore ($A_t = 1$) or exploit ($A_t = 0$)

• If
$$A_t = 1$$
, $\widehat{\mathbf{M}} \leftarrow \widehat{\mathbf{M}} \cup \{M_t\}$

Loss to agent

Agent aims to minimize total loss

MM

Environment has an unknown set $\mathbf{M} = \{M^1, M^2, ..., M^C\}$ **Agent** starts with $\widehat{\mathbf{M}} = \emptyset$

For t = 1, 2, ..., T

- Environment selects $M t \in t t t \in \mathbf{M}$
- Agent chooses to explore ($A_t = 1$) or exploit ($A_t = 0$)

• If
$$A_t = 1$$
, $\widehat{\mathbf{M}} \leftarrow \widehat{\mathbf{M}} \cup \{M_t\}$

Loss to agent

1, **M MM M** \leftarrow **M MM M** \cup {*M t MM M t tt M t* }

1) or exploit (A t A A A t t t A t = 0)

MM

Environment has an unknown set $\mathbf{M} = \{M^1, M^2, ..., M^C\}$ **Agent** starts with $\widehat{\mathbf{M}} = \emptyset$

For t = 1, 2, ..., T

- If A t = t t t = 1, $\widehat{\mathbf{M}} \leftarrow \widehat{\mathbf{M}} \cup \{M_t\}$
- Agent chooses to explore ($A_t = 1$) or exploit ($A_t = 0$)

• If
$$A_t = 1$$
, $\widehat{\mathbf{M}} \leftarrow \widehat{\mathbf{M}} \cup \{M_t\}$

Loss to agent

1, **M MM M** \leftarrow **M MM M** \cup {*M t MM M t tt M t* }

1) or exploit (A t A A A t t t A t = 0)

MM

Environment has an unknown set $\mathbf{M} = \{M^1, M^2, ..., M^C\}$ **Agent** starts with $\widehat{\mathbf{M}} = \emptyset$

For
$$t = 1, 2, ..., T$$

• Loss to agent $M_t \in \widehat{M}$ $M_t \notin \widehat{M}$ $(\rho_0 \ll \rho_1 \le \rho_2 \ll \rho_3)$
• Agent $A_t = 0$ ρ_0 ρ_3
• If $A_t = 1$ ρ_1 ρ_2
• If $A_t = 1, IVI \leftarrow IVI \cup \{IVI_t\}$

1, **M MM M** \leftarrow **M MM M** \cup {*M t MM M t tt M t* }

1) or exploit (A t A A A t t t A t = 0)

MM

Environment has an unknown set $\mathbf{M} = \{M^1, M^2, ..., M^C\}$ **Agent** starts with $\widehat{\mathbf{M}} = \emptyset$

For
$$t = 1, 2, ..., T$$

• Loss to agent $M_t \in \widehat{M}$ $M_t \notin \widehat{M}$
• Agent $A_t = 0$ ρ_0 ρ_3
• If $A_t = 1$ ρ_1 ρ_2
• If $A_t = 1, IVI \leftarrow IVI \cup \{IVI_t\}$
($\rho_0 \ll \rho_1 \le \rho_2 \ll \rho_3$)

Agent aims to minimize total loss

1, **M MM M** \leftarrow **M MM M** \cup {*M t MM M t tt M t* }

1) or exploit (A t A A A t t t A t = 0)

MM

Environment has an unknown set $\mathbf{M} = \{M^1, M^2, ..., M^C\}$ **Agent** starts with $\widehat{\mathbf{M}} = \emptyset$

For
$$t = 1, 2, ..., T$$

• Loss to agent $M_t \in \widehat{M}$ $M_t \notin \widehat{M}$
• Agent $A_t = 0$ ρ_0 ρ_3
• If $A_t = 1$ ρ_1 ρ_2
• If $A_t = 1, IVI \leftarrow IVI \cup \{IVI_t\}$
Agent aims to minimize total loss
 $(\rho_0 \ll \rho_1 \le \rho_2 \ll \rho_3)$
 $(\rho_0 \ll \rho_1 \le \rho_2 \ll \rho_3)$
 $(\rho_0 \ll \rho_1 \le \rho_2 \ll \rho_3)$
 ρ_0 : successful transfer
 ρ_3 : negative transfer

Explore-First Algorithm

Stochastic assumptions:

 $M_t \sim \mu$ *i.i.d.* over **M**, and $\mu_m \coloneqq \min_{M \in \mathbf{M}} \mu(M)$

Action selection

 $A_t = \begin{cases} 1 & \text{if } t \leq E \\ 0 & \text{otherwise} \end{cases}$ (Exploration phase) (Exploitation phase)

• _____ = $O(\mu_m^{-1} \log(C\mu_m T))$, then AverageLoss $\leq OptLoss + \frac{1}{T \cdot \mu_m} \log\left(\frac{TC\mu_m \rho_3}{\rho_1}\right)$

Explore-First Algorithm

OO $\mu m - 1 \log (C \mu m T) \mu m - 1 \mu \mu \mu m - 1 mm \mu m - 1 - 1 \mu m - 1 \log (C \mu m T) \log \log (C \mu m T) (CC \mu m \mu \mu m mm \mu m TT) \log (C \mu m T) \mu m - 1 \log (C \mu m T)$, then Stochastic assumptions:

$$M_t \sim \mu$$
 i.i.d. over **M**, and $\mu_m \coloneqq \min_{M \in \mathbf{M}} \mu(M)$

• Action selection

$$A_t = \begin{cases} 1 & \text{if } t \leq E \\ 0 & \text{otherwise} \end{cases}$$
(Exploration phase) (Exploitation phase)

AverageLoss
$$\leq \text{OptLoss} + \frac{1}{T \cdot \mu_{\text{m}}} \log \left(\frac{TC\mu_{m}\rho_{3}}{\rho_{1}} \right)$$

AverageLoss $\leq \text{OptLoss} + \frac{1}{T \cdot \mu_{\text{m}}} \log \left(\frac{TC\mu_{m}\rho_{3}}{\rho_{1}} \right)$

No stochastic assumption (M_t can even be generated **adversarially**!)

•
$$\geq \eta_2 \geq \cdots \geq \eta_T > 0$$

Algorithm chooses action

 $A_t \sim \text{Bernoulli}(\eta_t)$

• <u>Theorem</u>: If choose $\eta_t = 1/\sqrt{t}$, then AverageLoss ≤ 0 ptLoss $+ \frac{1}{\sqrt{T}}(2\rho_1 + C\rho_3)$

Bernoulli $\eta t \eta t \eta \eta \eta t t t \eta t \eta t$ $\eta 1 \ge \eta 2 \eta \eta \eta 2 2 \eta 2 \ge ... \ge \eta T \eta \eta \eta T TT \eta T > 0$ *No* stochastic assumption (M_t can even be generated adversarially!)

Algorithm chooses action

$$\begin{array}{l} A \ t \sim \ t \ t \ \sim \ \text{Bernoulli}(\eta_t) \\ A_t \sim \text{Bernoulli}(\eta_t) \end{array}$$

• <u>Theorem</u>: If choose $\eta_t = 1/\sqrt{t}$, then AverageLoss ≤ 0 ptLoss $+ \frac{1}{\sqrt{T}}(2\rho_1 + C\rho_3)$

• Algorithm chooses action

$$A t \sim t t t \sim \text{Bernoulli}(\eta_t)$$

AverageLoss $\leq \text{OptLoss} + \frac{1}{\sqrt{T}}(2\rho_1 + C\rho_3)$

• <u>Theorem</u>: If choose $\eta_t = 1/\sqrt{t}$, then AverageLoss ≤ 0 ptLoss $+ \frac{1}{\sqrt{T}}(2\rho_1 + C\rho_3)$

• Algorithm chooses action

$$A t \sim t t t \sim \text{Bernoulli}(\eta_t)$$

AverageLoss $\leq \text{OptLoss} + \frac{1}{\sqrt{T}}(2\rho_1 + C\rho_3)$

• <u>Theorem</u>: If choose $\eta_t = 1/\sqrt{t}$, then AverageLoss ≤ 0 ptLoss $+ \frac{1}{\sqrt{T}}(2\rho_1 + C\rho_3)$ We have an $\Omega\left(\frac{1}{\sqrt{T}}\right)$ lower bound \Rightarrow Forced-Exploration is essentially optimal

Input: S, A, γ Initia

Input: S, A, γ Initia

Input: S, A, γ Initia

Input: S, A, γ

Initia

= t t t = 1 if data shows M_t is novel

Sample complexity of algorithm **A** (given ϵ) [Kakade]

Number of steps where $Q^{\mathbf{A}_t}(s_t, a_t) \leq Q^*(s_t, a_t) - \epsilon$ Measures number of ϵ -mistakes made by the algorithm

• _____ long enough, with high prob.
SampleComplexity(Our Algorithm) =
$$\tilde{O}\left(\frac{CD}{\Gamma^2}T + SAN\sqrt{T}\right)$$

In contrast, single-task RL's Sample Complexity is $\Omega(SAT)$

ur Algorithm Our Algorithm = $O O O C D \Gamma 2 T + SAN T C D \Gamma 2 C C$ $D D C D \Gamma 2 \Gamma 2 \Gamma 2 2 \Gamma 2 C D \Gamma 2 T + SSAANN T T T T C D \Gamma 2 T$ +SAN T

Sample complexity of algorithm **A** (given ϵ) [Kakade]

Number of steps where $Q^{\mathbf{A}_t}(s_t, a_t) \leq Q^*(s_t, a_t) - \epsilon$

Measures number of ϵ -mistakes made by the algorithm

• **<u>Theorem</u>**: For *H* long enough, with high prob.

SampleComplexity *O*ur Algorithm = $\tilde{O}\left(\frac{CD}{\Gamma^2}T + SAN\sqrt{T}\right)$

In contrast, single-task RL's Sample Complexity is $\Omega(SAT)$

ur Algorithm Our Algorithm = $O O O C D \Gamma 2 T + SAN T C D \Gamma 2 C C$ $D D C D \Gamma 2 \Gamma 2 \Gamma 2 2 \Gamma 2 C D \Gamma 2 T + SSAANN T T T T C D \Gamma 2 T$ +SAN T

Sample complexity of algorithm **A** (given ϵ) [Kakade]

Number of steps where $Q^{\mathbf{A}_t}(s_t, a_t) \leq Q^*(s_t, a_t) - \epsilon$

Measures number of ϵ -mistakes made by the algorithm

• **<u>Theorem</u>**: For *H* long enough, with high prob.

SampleComplexity Our Algorithm = $\tilde{O}\left(\frac{CD}{T + SAN\sqrt{T}}\right)$

In contrast, single-task RL's Sample Complexity is $\Omega(SAT)$

SAT SSAATT SAT

ur Algorithm Our Algorithm = $0\ 00\ 0\ CD\ \Gamma\ 2\ T+SAN\ T\ CD\ \Gamma\ 2$ CCDD CD $\Gamma\ 2\ \Gamma\ 2\ \Gamma\ 2\ 2\ \Gamma\ 2\ CD\ \Gamma\ 2\ TT+SSANN\ T\ TTT\ T\ C$ D $\Gamma\ 2\ T+SAN\ T$

Sample complexity of algorithm **A** (given ϵ) [Kakade]

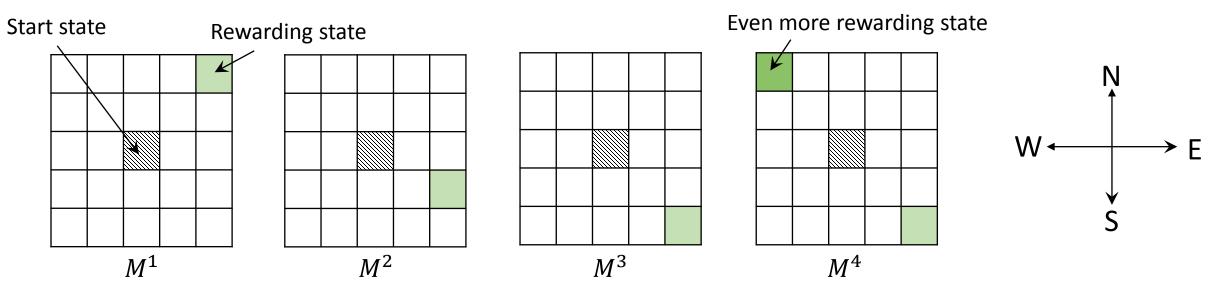
Number of steps where $Q^{\mathbf{A}_t}(s_t, a_t) \leq Q^*(s_t, a_t) - \epsilon$

Measures number of ϵ -mistakes masses by the engomiance

• <u>Theorem</u>: For *H* long enough, with high prob.

SampleComplexity Our Algorithm = $\tilde{O}\left(\frac{CD}{\Gamma^2}T + SAN\sqrt{T}\right)$

Experiment

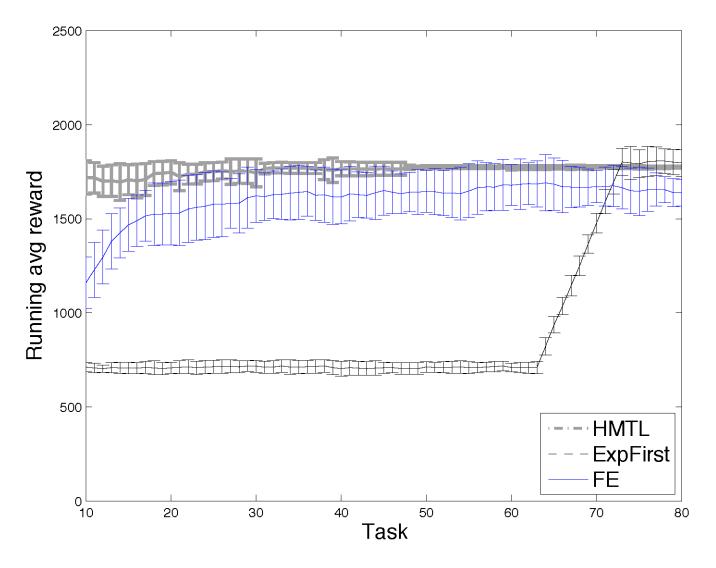


- 4 possible MDPs with
- noisy state transitions
- different rewarding states

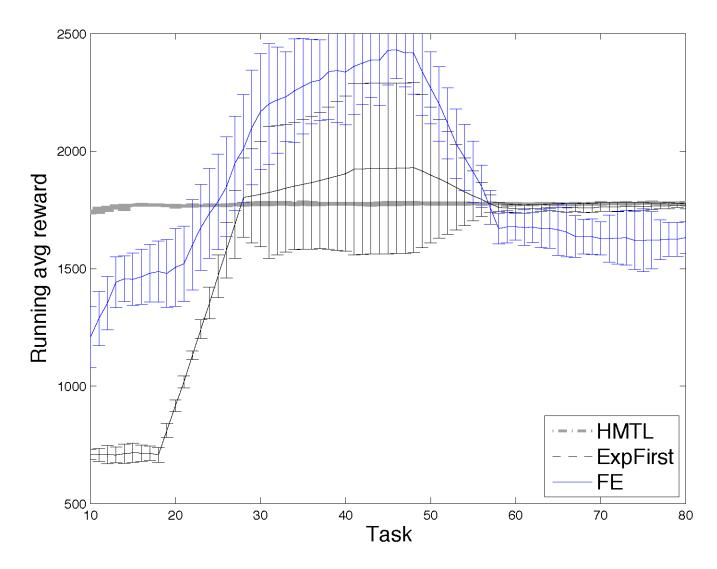
Algorithms for comparison

- Forced-exploration [this work]
- Explore-first [Brunskill-Li]
- Hierarchical Multi-task Learning [Wilson et al.]

Stochastic Setting with small μ_m



Adversarial Setting with Changing Distribution



Conclusions

- Two kinds of exploration needed in LLRL
- Online discovery problem as abstraction for cross-task exploration
- A new lifelong RL algorithm based on optimal ODP algorithm

 Provably sample complexity better than single-task RL
 Proof-of-concept experiments demonstrating desired behavior

Future work

- Function approximation
- Use of prior information