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Lifelong Learning Example: Intelligent Tutoring Systems

State = (courses taken, skills mastered, grades, …)

Action ∈ { test skill,
teach new concept,
review old lectures,
… }

How to benefit from past teaching experience?

How to teach Alice to benefit future students?

Alice

2



Task as Finite Markov Decision Process (MDP)

st 𝑎𝑎𝑡𝑡 𝑟𝑟𝑡𝑡 st+1

State 
space Action 

space

Transition 
probabilities

Reward 
function

Discount 
factor in (0,1)

𝐄𝐄 𝑟𝑟𝑡𝑡 = 𝑅𝑅 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 𝑠𝑠𝑡𝑡+1 ∼ 𝑃𝑃 ⋅ 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡

𝑀𝑀 = 𝑆𝑆, 𝐴𝐴, 𝑃𝑃, 𝑅𝑅, 𝛾𝛾
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A Class of Lifelong RL Problems

• Given (known): 𝑆𝑆 (finite), 𝐴𝐴 (finite), 𝛾𝛾 ∈ 0,1
• Unknown: 𝐌𝐌 = 𝑀𝑀1, 𝑀𝑀2, … , 𝑀𝑀𝐶𝐶

∀𝑀𝑀 ∈ 𝐌𝐌, 𝑀𝑀 = 〈𝑆𝑆, 𝐴𝐴, 𝑃𝑃𝑀𝑀 , 𝑅𝑅𝑀𝑀 , 𝛾𝛾〉

For 𝑡𝑡 = 1,2, … , 𝑇𝑇
• Environment chooses an unknown 𝑀𝑀𝑡𝑡 ∈ 𝐌𝐌
• Agent acts in 𝑀𝑀𝑡𝑡 for 𝐻𝐻 steps

Note: Many previous works on LLRL
with different setups
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• Given (known): 𝑆𝑆 (finite), 𝐴𝐴 (finite), 𝛾𝛾 ∈ 0,1
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For 𝑡𝑡 = 1,2, … , 𝑇𝑇
• Environment chooses an unknown 𝑀𝑀𝑡𝑡 ∈ 𝐌𝐌
• Agent acts in 𝑀𝑀𝑡𝑡 for 𝐻𝐻 steps

Note: Many previous works on LLRL
with different setups

Finitely many MDPs with
“large” model differences

Finite 𝑆𝑆 and 𝐴𝐴

Examples
• Student types w/ varying 

learning rates [Liu&Koedinger]
• User types in human robot 

interaction [Nikolaidis et al.]
• User goal recognition for 

task assistance [Fern et al.]
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Two Kinds of Exploration
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Current task
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𝑀𝑀𝑡𝑡−1 𝑀𝑀𝑡𝑡 𝑀𝑀𝑡𝑡+1

�𝐌𝐌: set of discovered types before 𝑡𝑡

When in 𝑀𝑀𝑡𝑡…
o Within-task learning:

• Goal: maximize reward in 𝑀𝑀𝑡𝑡
• Explore promising states in 𝑀𝑀𝑡𝑡 until policy is 𝜖𝜖-optimal

o Cross-task knowledge transfer:
• Goal: maximize reward in 𝑀𝑀𝑡𝑡+1, … w/ transferable info.
• Explore possibly all states in 𝑀𝑀𝑡𝑡 to discover novel types

Cross-task E/E tradeoff
over

within-task E/E tradeoff

Current task
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The Online Discovery Problem:
Abstraction of Cross-task Exploration

Environment has an unknown set 𝐌𝐌 = 𝑀𝑀1, 𝑀𝑀2, … , 𝑀𝑀𝐶𝐶

Agent starts with �𝐌𝐌 = ∅

For 𝑡𝑡 = 1,2, … , 𝑇𝑇
• ∈ 𝐌𝐌
• Agent chooses to explore (𝐴𝐴𝑡𝑡 = 1) or exploit (𝐴𝐴𝑡𝑡 = 0)

• If 𝐴𝐴𝑡𝑡 = 1, �𝐌𝐌 ← �𝐌𝐌 ∪ {𝑀𝑀𝑡𝑡}
• Loss to agent

Agent aims to minimize total loss
6
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Explore-First Algorithm

Stochastic assumptions:
𝑀𝑀𝑡𝑡 ∼ 𝜇𝜇 i.i.d. over 𝐌𝐌, and 𝜇𝜇𝑚𝑚 ≔ min

𝑀𝑀∈𝐌𝐌
𝜇𝜇 𝑀𝑀

• Action selection

𝐴𝐴𝑡𝑡 = �1 if 𝑡𝑡 ≤ 𝐸𝐸 (Exploration phase)
0 otherwise (Exploitation phase)

• = 𝑂𝑂 𝜇𝜇𝑚𝑚
−1 log(𝐶𝐶𝜇𝜇𝑚𝑚𝑇𝑇) , then

AverageLoss ≤ OptLoss + 1
𝑇𝑇⋅𝜇𝜇m

log 𝑇𝑇𝑇𝑇𝜇𝜇𝑚𝑚𝜌𝜌3
𝜌𝜌1
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Explore-First Algorithm
≤OptLoss+ 1 𝑇𝑇⋅ 𝜇𝜇 m  1 1 𝑇𝑇⋅ 𝜇𝜇 m  𝑇𝑇𝑇𝑇⋅ 𝜇𝜇 m 𝜇𝜇𝜇𝜇 𝜇𝜇 m m 𝜇𝜇 m  1 𝑇𝑇⋅ 𝜇𝜇 m  log  𝑇𝑇𝐶𝐶 𝜇𝜇 𝑚𝑚 𝜌𝜌 3   𝜌𝜌 1    𝑇𝑇𝐶𝐶 𝜇𝜇 𝑚𝑚
𝜌𝜌 3   𝜌𝜌 1  𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝜇𝜇 𝑚𝑚 𝜇𝜇𝜇𝜇 𝜇𝜇 𝑚𝑚 𝑚𝑚𝑚𝑚 𝜇𝜇 𝑚𝑚 𝜌𝜌 3 𝜌𝜌𝜌𝜌 𝜌𝜌 3 3 𝜌𝜌 3  𝑇𝑇𝐶𝐶 𝜇𝜇 𝑚𝑚 𝜌𝜌 3   𝜌𝜌 1   𝜌𝜌 1 𝜌𝜌𝜌𝜌 𝜌𝜌 1 1 𝜌𝜌 1  𝑇𝑇𝐶𝐶 𝜇𝜇 𝑚𝑚
𝜌𝜌 3   𝜌𝜌 1    𝑇𝑇𝐶𝐶 𝜇𝜇 𝑚𝑚 𝜌𝜌 3   𝜌𝜌 1   
𝑂𝑂𝑂𝑂 𝜇𝜇 𝑚𝑚 −1  log (𝐶𝐶 𝜇𝜇 𝑚𝑚 𝑇𝑇)   𝜇𝜇 𝑚𝑚 −1 𝜇𝜇𝜇𝜇 𝜇𝜇 𝑚𝑚 −1 𝑚𝑚𝑚𝑚 𝜇𝜇 𝑚𝑚 −1 −1 𝜇𝜇 𝑚𝑚 −1  log (𝐶𝐶 𝜇𝜇 𝑚𝑚 𝑇𝑇) log log (𝐶𝐶 𝜇𝜇
𝑚𝑚 𝑇𝑇) (𝐶𝐶𝐶𝐶 𝜇𝜇 𝑚𝑚 𝜇𝜇𝜇𝜇 𝜇𝜇 𝑚𝑚 𝑚𝑚𝑚𝑚 𝜇𝜇 𝑚𝑚 𝑇𝑇𝑇𝑇) log (𝐶𝐶 𝜇𝜇 𝑚𝑚 𝑇𝑇)   𝜇𝜇 𝑚𝑚 −1  log (𝐶𝐶 𝜇𝜇 𝑚𝑚 𝑇𝑇)  , then
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𝑀𝑀𝑡𝑡 ∼ 𝜇𝜇 i.i.d. over 𝐌𝐌, and 𝜇𝜇𝑚𝑚 ≔ min
𝑀𝑀∈𝐌𝐌

𝜇𝜇 𝑀𝑀
• Action selection

𝐴𝐴𝑡𝑡 = �1 if 𝑡𝑡 ≤ 𝐸𝐸 (Exploration phase)
0 otherwise (Exploitation phase)

AverageLoss ≤ OptLoss + 1
𝑇𝑇⋅𝜇𝜇m

log 𝑇𝑇𝑇𝑇𝜇𝜇𝑚𝑚𝜌𝜌3
𝜌𝜌1

AverageLoss ≤ OptLoss + 1
𝑇𝑇⋅𝜇𝜇m

log 𝑇𝑇𝑇𝑇𝜇𝜇𝑚𝑚𝜌𝜌3
𝜌𝜌1

7



Forced-Exploration Algorithm

No stochastic assumption (𝑀𝑀𝑡𝑡 can even be generated adversarially!)
• ≥ 𝜂𝜂2 ≥ ⋯ ≥ 𝜂𝜂𝑇𝑇 > 0
• Algorithm chooses action

𝐴𝐴𝑡𝑡 ∼ Bernoulli 𝜂𝜂𝑡𝑡

• Theorem: If choose 𝜂𝜂𝑡𝑡 = 1/ 𝑡𝑡, then

AverageLoss ≤ OptLoss + 1
𝑇𝑇

2𝜌𝜌1 + 𝐶𝐶𝜌𝜌3
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Forced-Exploration Algorithm
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Forced-Exploration Algorithm
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• Algorithm chooses action

𝐴𝐴 𝑡𝑡 ∼ 𝑡𝑡 𝑡𝑡 𝑡𝑡 ∼ Bernoulli 𝜂𝜂𝑡𝑡

AverageLoss ≤ OptLoss +
1
𝑇𝑇

2𝜌𝜌1 + 𝐶𝐶𝜌𝜌3

• Theorem: If choose 𝜂𝜂𝑡𝑡 = 1/ 𝑡𝑡, then
AverageLoss ≤ OptLoss + 1
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𝐴𝐴 𝑡𝑡 ∼ 𝑡𝑡 𝑡𝑡 𝑡𝑡 ∼ Bernoulli 𝜂𝜂𝑡𝑡

AverageLoss ≤ OptLoss +
1
𝑇𝑇

2𝜌𝜌1 + 𝐶𝐶𝜌𝜌3

• Theorem: If choose 𝜂𝜂𝑡𝑡 = 1/ 𝑡𝑡, then
AverageLoss ≤ OptLoss + 1

𝑇𝑇
2𝜌𝜌1 + 𝐶𝐶𝜌𝜌3

We have an Ω 1
𝑇𝑇

lower bound 
 Forced-Exploration is essentially optimal 8



A Lifelong RL Algorithm based on FE

Input: 𝑆𝑆, 𝐴𝐴, 𝛾𝛾
Initia     
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A Lifelong RL Algorithm based on FE

Input: 𝑆𝑆, 𝐴𝐴, 𝛾𝛾
Initia     1 if data shows 𝑀𝑀 𝑡𝑡 is novel

• (Optionally) switch to 𝐴𝐴 𝑡𝑡 = 𝑡𝑡 𝑡𝑡 𝑡𝑡 = 1 if data shows 𝑀𝑀𝑡𝑡 is novel
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Sample Complexity of Exploration
Sample complexity of algorithm A (given 𝜖𝜖) [Kakade]

Number of steps where 𝑄𝑄A𝑡𝑡 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡 ≤ 𝑄𝑄∗ 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 − 𝜖𝜖
Measures number of 𝜖𝜖-mistakes made by the algorithm

• long enough, with high prob.

SampleComplexity Our Algorithm = �𝑂𝑂
𝐶𝐶𝐶𝐶
Γ2 𝑇𝑇 + 𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇

In contrast, single-task RL’s Sample Complexity is Ω 𝑆𝑆𝑆𝑆𝑆𝑆
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Sample Complexity of Exploration
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Number of steps where 𝑄𝑄A𝑡𝑡 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ≤ 𝑄𝑄∗ 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 − 𝜖𝜖
Measures number of 𝜖𝜖-mistakes made by the algorithm

• Theorem: For 𝐻𝐻 long enough, with high prob.

SampleComplexity 𝑂𝑂ur Algorithm = �𝑂𝑂
𝐶𝐶𝐶𝐶
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• Theorem: For 𝐻𝐻 long enough, with high prob.

SampleComplexity 𝑂𝑂ur Algorithm = �𝑂𝑂
𝐶𝐶𝐶𝐶
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Asymptotic performance
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Sample Complexity of Exploration
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Measures number of 𝜖𝜖-mistakes made by the algorithm

• Theorem: For 𝐻𝐻 long enough, with high prob.

SampleComplexity 𝑂𝑂ur Algorithm = �𝑂𝑂
𝐶𝐶𝐶𝐶
Γ2 𝑇𝑇 + 𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇

       

Asymptotic performance
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Experiment

4 possible MDPs with
• noisy state transitions
• different rewarding states

EW

N

S

Algorithms for comparison
• Forced-exploration [this work]
• Explore-first [Brunskill-Li]
• Hierarchical Multi-task Learning 

[Wilson et al.]

𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4

11

Rewarding state Even more rewarding stateStart state



Stochastic Setting with small 𝜇𝜇𝑚𝑚
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Adversarial Setting with Changing Distribution
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Conclusions

• Two kinds of exploration needed in LLRL
• Online discovery problem as abstraction for cross-task exploration
• A new lifelong RL algorithm based on optimal ODP algorithm

o Provably sample complexity better than single-task RL
o Proof-of-concept experiments demonstrating desired behavior

Future work
• Function approximation
• Use of prior information
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