
Escaping  
Groundhog Day

James MacGlashan!
Stefanie Tellex

Michael Littman

Key Message

Ground Figure
everything is constant everything varies

Problem
Generators

some constants, some variables

Reinforcement Learning

What if something changes?

Groundhog Day
Assumptions

Environment

Agent

Action
Reward

State

Groundhog Day
Assumptions

Environment

Agent

Action

Reset?

Reward

State

Groundhog Day
Assumptions

• Reward function is
always the same

• State resets indefinitely

• Resets to states similar to
those visited

Environment

Agent

Action

Reset?

Reward

State

Groundhog Day
Assumptions

• Reward function is always
the same

• Resets indefinitely

• Resets to states similar to
those visited

• Enables hyper optimization

Environment

Agent

Action

Reset?

Reward

State

Groundhog Day Successes

Mnih et al. 2015

Tesauro, 1995 Crites and Barto, 1996 Singh and Bertsekas, 1997

Peters and Schaal, 2007Ng et al., 2004

Between Ground and Figure

Learn what changes

• RMax learns the
transitions and
keeps them

• Subsequently only
learns about goal

Escaping Groundhog Day

• Relax groundhog day assumptions

• Investigate benchmark problems generators

• Develop appropriate learning machinery

Escaping Assumptions
• Problem generator that can

affect

• initial state distribution

• reward function/goal

• action model

• After learning, a new problem is
generated

• Some things remain the same,
some vary

• Learn to behave across
distribution

Environment

Agent

Action

Reset?

Reward

State

Problem

Problem Generator

Related Areas

• Learning hierarchical actions

• Transfer learning

• Bayesian RL

Problem Generators

Robotics Minecraft

Robotics

• The real world is complex

• Easy to create variation in
the environment

• Examine tasks other than
motion controllers

Minecraft
• Can expand to very

large worlds

• Turing complete
complexity

• Safe; no hardware
failures

• Many possible goals

• Very easy to manipulate

Reasoning with a Problem
Generator

• Need mechanisms to generalize knowledge across problems

• Requires reasoning about the state

• Some existing approaches

• Agent space features (Konidaris and Barto, 2007)

• Intertask mappings (Taylor, Stone, and Liu, 2007)

• Horde (Sutton, Modayil, Delp, Degris, Pilarski, White, and Precup,
2011)

• We will highlight Object-oriented MDPs (Diuk, Cohen, and Littman, 2008)

• Works well for robotics environments and Minecraft

OO-MDPs 

World consists of objects
that belong to classes

• robot
• room
• door
• block

(Diuk, Cohen, Littman, 2008)

OO-MDPs 
(Diuk, Cohen, Littman, 2008)

Each object has a value
assignment to its attributes

• robot0
(x,y) := (2,6)  

• block1
(x,y,color,shape) := (2,3,blue,chair)  

• etc.

OO-MDP Generalization

• Transition dynamics
factored by objects

• DOORMax (Diuk, Cohen, and
Littman, 2008)

• Physics based Prior
(Scholz, Levihn, Isbell, and
Wingate, 2014)

BURLAP
• Java RL and Planning Library

• Problem and State Generators

• OO-MDP Representation

• ROS interface

• Minecraft interface  
github.com/h2r/burlapcraft

http://burlap.cs.brown.edu

http://github.com/h2r/burlapcraft
http://burlap.cs.brown.edu

What we can learn
• World physics

• Learning to learn

• Learning to plan

• Task decomposition and representation

• Learning about natural language

Learning to Learn
• Given two parameterized

algorithms, which do we use?

• For single problem tune each
and extract policy

• For problem distribution, need
to worry about over and under
fitting

• Compute theoretical
generalization bounds

• Works with weak parameter
optimization and samples

Learning to Plan

• Goal-directed action
priors

• Not all actions are
relevant for a given
goal-type in every state

• Learn possibly relevant
actions and prune the
rest

• Prune irrelevant actions

Problem
Generator

{π1, …}

Planning

Supervised
Learning

(Abel, Hershkowitz, Barth-Maron, Brawner,  
O’Farrell, MacGlashan, and Tellex, 2015)

Escaping Groundhog Day
James MacGlashan, Stefanie Tellex, and Michael L. Littman

1. Classic RL Is Like the Movie Groundhog Day
Q-learning value function very slowly
shifts to the new goal location

Before goal change 100 steps

Ground
everything is constant

Figure
everything varies

Problem Generators
some constants, some variables

Environment

Agent

Action

Reset?

Reward

State

• Wake up
• Act in the world until completion
• Reset back to the beginning
• Hyper optimize with retries

2. Brittle to Changes

500 steps 800 steps

4. Relax Problem Assumptions

Environment

Agent

Action

Reset?

Reward

State

Problem

Problem Generator
• Problem can affect
 • Reset states
 • Transition function
 • Reward function
• Learn what is ground
 and figure

Related Areas
• Learning Action Hierarchies
• Transfer Learning
• Bayesian RL

5. Domains for Problem Generators
Robotics

• The real world is complex
• Easy to have variation in the environment
• Range of learning tasks beyond motion controllers

Minecraft
• Enormous worlds
• Turing complete
 complexity
• Safe
• No hardware failures
• Many possible goals
• Easy to manipulate

6. Object-oriented MDPs

• Represent state as a collection of objects

• Each object receives a value assignment, e.g.,
 robot := <2,6>; block0 := <2,2,chair,blue>; ...
• Permits learning object-wise transition functions

8. Learning to Learn

7. BURLAP

• Tune and select an algorithm for a distribution of
 problems.
• Introduce Sample Optimized Rademacher
 Complexity to generate generalization bounds
• Formal bounds from training problems and weak
 parameter optimization
• Grounds as many parameters as possible

Example
• Two classes of Q-learning parameters to tune
 1) epsilon, learning rate
 2) epsilon, learning rate, all initial Q-values
• On a narrow distribution with little data,
 choose (2); on wide distribution choose (1)

9. Learning to Plan

• Not all actions are relevant for all states and
 goals
• Prune irrelevant actions
• Learn optimality probability from solved
 training problems
• Grounds bad action decisions

• We test on Minecraft
• Training data consists of small problems
• Testing is on larger harder problems

Problem
Generator

...

Planning

{π1, π2, ..., πn}

Supervised Learning

• Java RL and
 planning library
• Problem and state
 generators
• OO-MDP Representation
• ROS Interface
• Minecraft interface
 github.com/h2r/burlapcraft
• Function approximation
• Options
• Inverse RL
• Multi-agent
• and more!

http://burlap.cs.brown.edu

(Abel, Hershkowitz, Barth-Maron, Brawner, O’Farrell,
MacGlashan, and Tellex, 2015)

(Diuk, Cohen, and Littman, 2008)

3. Escaping Groundhog Day
• Relax assumptions
• Investigate benchmark problem generators
• Develop appropriate learning machinery

Conclusion
• Recent work gearing towards a problem generator paradigm

• Novel states, reward function, and transition dynamics

• Some things stay the some others vary

• Robotics and Minecraft offer interesting problems

• New Machinery

• OO-MDPs, goal-based action priors, algorithm selection,

• BURLAP - problem generators, ROS, and Minecraft

• http://burlap.cs.brown.edu

• Minecraft interface: https://github.com/h2r/burlapcraft

http://burlap.cs.brown.edu
https://github.com/h2r/burlapcraft

Collaborators
• David Abel
• Krishna Aluru
• Gabriel Barth-Maron
• Stephen Brawner
• Ellis Hershkowitz
• Vukosi Marivate
• Kevin O’Farrell
• Matthew Taylor
• Carl Trimbach
• Eli Upfal

Conclusion
• Recent work gearing towards a problem generator paradigm

• Novel states, reward function, and transition dynamics

• Some things stay the some others vary

• Robotics and Minecraft offer interesting problems

• New Machinery

• OO-MDPs, goal-based action priors, algorithm selection,

• BURLAP - problem generators, ROS, and Minecraft

• http://burlap.cs.brown.edu

• Minecraft interface: https://github.com/h2r/burlapcraft

http://burlap.cs.brown.edu
https://github.com/h2r/burlapcraft

