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Key Message

Ground Figure
everything is constant everything varies

Problem 
Generators

some constants, some variables



Reinforcement Learning



What if something changes?
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Groundhog Day 
Assumptions

• Reward function is 
always the same 

• State resets indefinitely 

• Resets to states similar to 
those visited
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Groundhog Day 
Assumptions

• Reward function is always 
the same 

• Resets indefinitely 

• Resets to states similar to 
those visited 

• Enables hyper optimization
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Groundhog Day Successes

Mnih et al. 2015

Tesauro, 1995 Crites and Barto, 1996 Singh and Bertsekas, 1997

Peters and Schaal, 2007Ng et al., 2004 



Between Ground and Figure



Learn what changes

• RMax learns the 
transitions and 
keeps them 

• Subsequently only 
learns about goal



Escaping Groundhog Day

• Relax groundhog day assumptions 

• Investigate benchmark problems generators 

• Develop appropriate learning machinery



Escaping Assumptions
• Problem generator that can 

affect 

• initial state distribution 

• reward function/goal 

• action model 

• After learning, a new problem is 
generated 

• Some things remain the same, 
some vary 

• Learn to behave across 
distribution
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Related Areas

• Learning hierarchical actions 

• Transfer learning 

• Bayesian RL



Problem Generators

Robotics Minecraft



Robotics

• The real world is complex 

• Easy to create variation in 
the environment 

• Examine tasks other than 
motion controllers



Minecraft
• Can expand to very 

large worlds 

• Turing complete 
complexity 

• Safe; no hardware 
failures 

• Many possible goals 

• Very easy to manipulate



Reasoning with a Problem 
Generator

• Need mechanisms to generalize knowledge across problems 

• Requires reasoning about the state 

• Some existing approaches 

• Agent space features (Konidaris and Barto, 2007) 

• Intertask mappings (Taylor, Stone, and Liu, 2007) 

• Horde (Sutton, Modayil, Delp, Degris, Pilarski, White, and Precup, 
2011) 

• We will highlight Object-oriented MDPs (Diuk, Cohen, and Littman, 2008) 

• Works well for robotics environments and Minecraft



OO-MDPs 

World consists of objects 
that belong to classes

• robot 
• room 
• door 
• block

(Diuk, Cohen, Littman, 2008)



OO-MDPs 
(Diuk, Cohen, Littman, 2008)

Each object has a value 
assignment to its attributes

• robot0  
(x,y) := (2,6)  

• block1 
(x,y,color,shape) := (2,3,blue,chair)  

• etc. 



OO-MDP Generalization 

• Transition dynamics 
factored by objects 

• DOORMax (Diuk, Cohen, and 
Littman, 2008) 

• Physics based Prior 
(Scholz, Levihn, Isbell, and 
Wingate, 2014)



BURLAP
• Java RL and Planning Library 

• Problem and State Generators 

• OO-MDP Representation 

• ROS interface 

• Minecraft interface  
github.com/h2r/burlapcraft

http://burlap.cs.brown.edu

http://github.com/h2r/burlapcraft
http://burlap.cs.brown.edu


What we can learn
• World physics  

• Learning to learn 

• Learning to plan 

• Task decomposition and representation 

• Learning about natural language



Learning to Learn
• Given two parameterized 

algorithms, which do we use? 

• For single problem tune each 
and extract policy 

• For problem distribution, need 
to worry about over and under 
fitting 

• Compute theoretical 
generalization bounds 

• Works with weak parameter 
optimization and samples



Learning to Plan

• Goal-directed action 
priors 

• Not all actions are 
relevant for a given 
goal-type in every state 

• Learn possibly relevant 
actions and prune the 
rest 

• Prune irrelevant actions

Problem 
Generator

{π1, …}

Planning

Supervised 
Learning

(Abel, Hershkowitz, Barth-Maron, Brawner,  
O’Farrell, MacGlashan, and Tellex, 2015)



Escaping Groundhog Day
James MacGlashan, Stefanie Tellex, and Michael L. Littman

1. Classic RL Is Like the Movie Groundhog Day
Q-learning value function very slowly 
shifts to the new goal location

Before goal change 100 steps

Ground
everything is constant

Figure
everything varies

Problem Generators
some constants, some variables

Environment

Agent

Action

Reset?

Reward

State

• Wake up
• Act in the world until completion
• Reset back to the beginning
• Hyper optimize with retries

2. Brittle to Changes

500 steps 800 steps

4. Relax Problem Assumptions

Environment
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Action
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State

Problem

Problem Generator
• Problem can affect
    • Reset states
    • Transition function
    • Reward function
• Learn what is ground
  and figure

Related Areas
• Learning Action Hierarchies
• Transfer Learning
• Bayesian RL

5. Domains for Problem Generators 
Robotics

• The real world is complex
• Easy to have variation in the environment
• Range of learning tasks beyond motion controllers

Minecraft
• Enormous worlds
• Turing complete
  complexity
• Safe
• No hardware failures
• Many possible goals
• Easy to manipulate

6. Object-oriented MDPs

• Represent state as a collection of objects

• Each object receives a value assignment, e.g.,
       robot := <2,6>; block0 := <2,2,chair,blue>; ...
• Permits learning object-wise transition functions

8. Learning to Learn

7. BURLAP

• Tune and select an algorithm for a distribution of
  problems.
• Introduce Sample Optimized Rademacher 
  Complexity to generate generalization bounds
• Formal bounds from training problems and weak
  parameter optimization
• Grounds as many parameters as possible

Example
• Two classes of Q-learning parameters to tune
    1) epsilon, learning rate
    2) epsilon, learning rate, all initial Q-values
• On a narrow distribution with little data, 
  choose (2); on wide distribution choose (1)

9. Learning to Plan

• Not all actions are relevant for all states and
  goals
• Prune irrelevant actions
• Learn optimality probability from solved 
  training problems
• Grounds bad action decisions

• We test on Minecraft
• Training data consists of small problems
• Testing is on larger harder problems

Problem 
Generator

...

Planning

{π1, π2, ..., πn}

Supervised Learning

• Java RL and 
  planning library
• Problem and state
  generators
• OO-MDP Representation
• ROS Interface
• Minecraft interface
  github.com/h2r/burlapcraft
• Function approximation
• Options
• Inverse RL
• Multi-agent
• and more!

http://burlap.cs.brown.edu

(Abel, Hershkowitz, Barth-Maron, Brawner, O’Farrell, 
MacGlashan, and Tellex, 2015)

(Diuk, Cohen, and Littman, 2008)

3. Escaping Groundhog Day
• Relax assumptions
• Investigate benchmark problem generators
• Develop appropriate learning machinery



Conclusion
• Recent work gearing towards a problem generator paradigm 

• Novel states, reward function, and transition dynamics 

• Some things stay the some others vary 

• Robotics and Minecraft offer interesting problems 

• New Machinery 

• OO-MDPs, goal-based action priors, algorithm selection, 

• BURLAP - problem generators, ROS, and Minecraft 

• http://burlap.cs.brown.edu 

• Minecraft interface: https://github.com/h2r/burlapcraft

http://burlap.cs.brown.edu
https://github.com/h2r/burlapcraft
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Conclusion
• Recent work gearing towards a problem generator paradigm 

• Novel states, reward function, and transition dynamics 

• Some things stay the some others vary 

• Robotics and Minecraft offer interesting problems 

• New Machinery 

• OO-MDPs, goal-based action priors, algorithm selection, 
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