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Motivation

We are interested in systems with multiple agents (decision makers) that wish to
cooperate in order to accomplish a common task while

agents have different information (decentralized information)

agents do not know the complete model of the system i.e., they may only know the
partial model or may not know the model at all.

Multi-agent systems arise in various applications: Networked control systems, Robotics,
Communication networks, Transportation networks, Sensor networks, Smart grids,
Economics, etc.

Advantages of multi-agent (decentralized) over single-agent (centralized) systems:

distributes computational resources and capacities.

provides robustness, maintainability, and flexibility.

implements the solution efficiently (physically and economically).
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Challenges

The discrepancy in perspectives makes establishing cooperation among agents con-
ceptually challenging.

In general, these problems belong to NEXP complexity class.

Finding team-optimal solution is more challenging when agents have only partial
knowledge or no knowledge of system model.
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Problem Formulation

Consider a system with finite-valued variables that consists of n ∈ N agents.

State of system St ∈ S and action of agent i : Ai
t ∈ Ai , where t ∈ N denotes time.

Observation of agent i : O i
t = hi (St ,A

1
t−1, . . . ,A

n
t−1,V

i
t )

Information of agent i : I it ⊆ {O1
1:t , . . . ,O

n
1:t ,A

1
1:t−1, . . . ,A

n
1:t−1} .
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Problem Formulation
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Control law of agent i : Ai
t = g i

t (I it ).

Control strategy g := (g1, g2, . . .), where gt := (g 1
t , . . . , g

n
t ).

Reward given control strategy g : J(g) = Eg
[∑∞

t=1 γ
t−1r(St ,A

1
t , . . . ,A

n
t )
]
.

Agents observe the immediate reward.

Objective: Develop a (model-based or model-free) reinforcement learning algorithms
that guarantees an ε-optimal strategy g∗ i.e. J∗ − J(g∗) ≤ ε.
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Partial History Sharing

Split I it = {Ct ,M
i
t}, where Ct =

⋂
i I

i
t is common information and M i

t = I it \Ct is local
information.

Common Information Local Information

(A1) Common information is nested: Ct+1 = {Ct ,Zt}, where Zt := Ct+1\Ct is common
observation such that Ct+1 = Z1:t .

(A2) The update of local information M i
t+1 ⊆ {M i

t ,A
i
t ,O

i
t+1}.

(A3) The size of Zt and the size of M i
t , ∀i , are uniformely bounded in time t.

(A1), (A2), and (A3) are mild conditions. Also, Ct is allowed to be empty set.

A large class of multi-agent systems have partial history sharing such as: delayed
sharing, control sharing, mean-field sharing, etc.
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Methodology

Our approach has two main steps:

Step 1) Common Information Approach

Step 2) Approximate RL algorithm for centralized (single-agent) POMDPs
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Salient Feature of the Approach

This approach guarantees ε-optimality performance.

It encompasses a large class of multi-agent systems.

Various POMDP RL algorithms may be used in step 2 to obtain different approaches.

The approach used in Step 2 is a novel POMDP RL algorithm.
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Step 1) Common Information Approach [Nayyar, Mahajan,Teneketzis 2013]

 
 

 

 
   

 

  

 

Environment

Coordinated SystemVirtual Coordinator

Define partial function β i
t :Mi → Ai as follows:

β i
t(·) := g i

t (Z1:t , ·) such that Ai
t = β i

t(M
i
t).

Define coordinator’s strategy as follows:

ψt(Z1:t) := gt(Z1:t , ·) such that (β1
t , . . . , β

n
t ) = ψt(Z1:t).

Virtual coordinator observes Ct and prescribes βt =: (β1
t , . . . , β

n
t ) ∈ G.

An Equivalent Centralized POMDP

The total expected reward in coordinated system is as follows:

Ĵ(ψ) = Eψ
[
∞∑
t=1

γt−1rt(St , β
1
t (M1

t ), . . . , βn
t (Mn

t ))

]
.
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Step 1) Common Information Approach [Nayyar, Mahajan,Teneketzis 2013]

 
 

 

 
   

 

  

 

Environment

Coordinated SystemVirtual Coordinator

Πt = P(St ,M
1
t , . . . ,M

n
t |Z1:t−1, β1:t−1) is an information state.

Let R be the reachable set of the obtained POMDP with action β ∈ G and
observation Z ∈ Z.

Given fixed initial distribution π1, reachable set R is at most countable.
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Step 2: An Approximate POMDP RL Algorithm

Incrementally Expanding Representation (IER)

IER is a 3-tuple 〈{X}∞N=1, f̃ ,B}〉 such that

{X}∞N=1 is a sequence of finite sets such that X1 ( X2 ( . . .XN ( . . ., and X1 is
singleton say X1 = {x∗}. Let X = limN→∞ XN .

For any β and z , and x ∈ XN , we have that f̃ (x , β, z) ∈ XN+1.

B is surjective function that maps X to the reachable set s.t. Πt = B(Xt).

Lemma 1

For every multi-agent system with partial history sharing information structure, there
exists at least one IER such that X and f̃ do not depend on unknowns .

Note that B may depend on unknowns.
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Step 2: An Approximate POMDP RL Algorithm

Construct countable-state MDP ∆ with state space X , action space G, dynamics f̃ ,
and reward r̃(B(Xt), βt) := r̂t(Πt , βt).

Approximate ∆ by finite-state MDPs {∆N}∞N=1 where state space is XN , action
space G, dynamics f̃ , and reward r̃(B(Xt), βt).

Apply a generic finite-state RL algorithm ζ to learn optimal strategy of ∆N . We
assume ζ converges to an optimal strategy of ∆N .

Translate the strategies in ∆N to strategies in the original multi-agent system.

Main Theorem

Let J∗ be the optimal performance (reward) of the original MAS system and J̃ be the
performance under the learned strategy. Then,

J − J̃ ≤ εN ,

where εN = 2γτN

1−γ
(rmax − rmin) ≤ 2γN

1−γ
(rmax − rmin) and τN is a model dependent parameter

that τN ≥ N. Note that error goes to zero exponentially in N.
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Multi-Agent RL Algorithm

(1) Given ε > 0, choose N such that 2γN

1−γ
(rmax − rmin) ≤ ε. Then, construct ∆N ;

particularly, state space XN and dynamics f̃ .

(2) At iteration k, ζ chooses prescriptions βk = (β1
k , . . . , β

n
k ). (Agents have access to a

common random generator to explore consistently). Agent i takes action aik based
on prescription β i

k and local information mi
k :

aik = β i
k(mi

k),∀i .

(3) Based on taken actions, system incurs reward rk , evolves, and generates common
observation zk that is observable to every agent. Agents consistently compute next
state as follows

xk+1 = f̃ (xk , βk , zk) ∈ XN .

(4) ζ learns (updates) the coordinated strategy according to observed reward rk by
performing prescriptions βk at state xk and transiting to state xk+1.

(5) k ← k + 1, and got step 2 until termination.
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Example: Multi-Access Broadcasting Channel (MABC)

Packets arriving 

at rate p

Packets arriving 

at rate q

Shared Channel

St = (S1
t , S

2
t ) ∈ {0, 1}2, Ai

t ∈ {0, 1}.

Packets arrive at user i according to independent Bernoulli process with rate pi ∈ (0, 1)
tat are unknown.

Each user transmits if it has a packet i.e. Ai
t ≤ S i

t .

Information at each agent I it = {S i
t ,A

1
1:t−1,A

2
1:t−1}.

The objective is to maximize the throughput; hence, reward function r(St ,A
1
t ,A

2
t ) =

A1
t + A2

t − 2A1
tA

2
t .
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Example: Multi-Access Broadcasting Channel (MABC)

Reachable set Countable state Space 
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Example: Multi-Access Broadcasting Channel (MABC)

Figure: This figures shows the learning process of MDP ∆N in a few snapshots. Numerical
values: b1 = 0.25, b2 = 0.83,N = 50, γ = 0.99, p1 = 0.3, p2 = 0.6.
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Summary

Given ε > 0, we presented a (model-based or model-free) RL algorithm that guarantees
ε-optimality for a large class of multi-agent systems with partial history sharing.

Our approach has two main steps: Common Information Approach + POMDP RL.

We provided a novel approach for approximate solution of POMDPs (model known
and unknown model).

We developed a multi-agent Q-learning algorithm for MABC problem that converges
to optimal policy.

The obtained error bound is conservative and in practice, the actual error is less.
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Only for (online) learning purposes

Main Property

When state xt steps out of ∆N , it will come back to XN after a finite time.

This property is required for a model to have every pair of state and action in ∆N visited
infinitely often. In the literature, different versions of this property have been considered.

There exists an oracle that provides the agent with exact information about the
current state, upon request; however, using the oracle is expensive and reserved for
the learning phase.

In sensor networks, where the communication is sensing is cheap but communication
is expensive.

Agents have access to ”reset” or ”off-line” simulation.

∆ is such that after a finite time, the state will come back to ∆N , so it is better to
wait until the state comes back.

(J. Arabneydi,www.cim.mcgill.ca/ jarabney) RLDM 2015 19 / 19


	Introduction
	Problem Formulation 
	Main Results
	Example
	Summary

