# Reinforcement Learning in Multi-Agent Systems with Partial History Sharing

## Jalal Arabneydi and Aditya Mahajan



## Electrical and Computer Engineering Department, McGill University

Website: www.cim.mcgill.ca/ jarabney

Date: June 9th, 2015

- We are interested in systems with multiple agents (decision makers) that wish to cooperate in order to accomplish a common task while
  - agents have different information (decentralized information)
  - agents do not know the complete model of the system i.e., they may only know the partial model or may not know the model at all.

- Multi-agent systems arise in various applications: Networked control systems, Robotics, Communication networks, Transportation networks, Sensor networks, Smart grids, Economics, etc.
- Advantages of multi-agent (decentralized) over single-agent (centralized) systems:
  - distributes computational resources and capacities.
  - provides robustness, maintainability, and flexibility.
  - implements the solution efficiently (physically and economically).

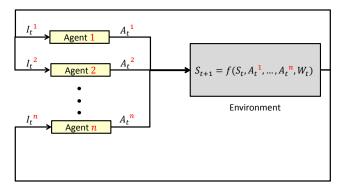
• The discrepancy in perspectives makes establishing cooperation among agents conceptually challenging.

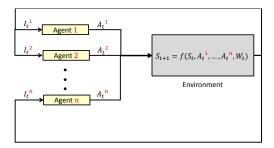


- In general, these problems belong to **NEXP complexity** class.
- Finding team-optimal solution is more challenging when agents have only partial knowledge or no knowledge of system model.

### Problem Formulation

- Consider a system with finite-valued variables that consists of  $n \in \mathbb{N}$  agents.
- State of system  $S_t \in S$  and action of agent  $i: A^i_t \in A^i$ , where  $t \in \mathbb{N}$  denotes time.
- Observation of agent i:  $O_t^i = h^i(S_t, A_{t-1}^1, \dots, A_{t-1}^n, V_t^i)$
- Information of agent  $i: I_t^i \subseteq \{O_{1:t}^1, \dots, O_{1:t}^n, A_{1:t-1}^1, \dots, A_{1:t-1}^n\}$ .





- Control law of agent *i*:  $A_t^i = g_t^i(I_t^i)$ .
- Control strategy  $\mathbf{g} := (g_1, g_2, \ldots)$ , where  $g_t := (g_t^1, \ldots, g_t^n)$ .
- Reward given control strategy  $\mathbf{g} : J(\mathbf{g}) = \mathbb{E}^{\mathbf{g}} \left[ \sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t^1, \dots, A_t^n) \right].$
- Agents observe the immediate reward.
- Objective: Develop a (model-based or model-free) reinforcement learning algorithms that guarantees an *ϵ*-optimal strategy g<sup>\*</sup> i.e. J<sup>\*</sup> − J(g<sup>\*</sup>) ≤ *ϵ*.

Split  $I_t^i = \{C_t, M_t^i\}$ , where  $C_t = \bigcap_i I_t^i$  is common information and  $M_t^i = I_t^i \setminus C_t$  is local information.



- (A1) Common information is nested:  $C_{t+1} = \{C_t, Z_t\}$ , where  $Z_t := C_{t+1} \setminus C_t$  is common observation such that  $C_{t+1} = Z_{1:t}$ .
- (A2) The update of local information  $M_{t+1}^i \subseteq \{M_t^i, A_t^i, O_{t+1}^i\}$ .

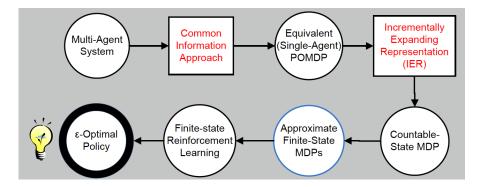
(A3) The size of  $Z_t$  and the size of  $M_t^i$ ,  $\forall i$ , are uniformely bounded in time t.

- (A1), (A2), and (A3) are mild conditions. Also,  $C_t$  is allowed to be empty set.
- A large class of multi-agent systems have partial history sharing such as: delayed sharing, control sharing, mean-field sharing, etc.

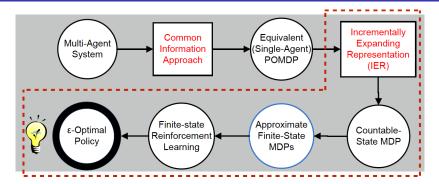
## Methodology

Our approach has two main steps:

- Step 1) Common Information Approach
- Step 2) Approximate RL algorithm for centralized (single-agent) POMDPs

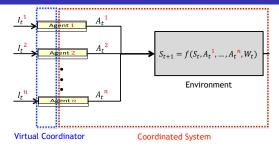


## Salient Feature of the Approach



- This approach guarantees  $\epsilon$ -optimality performance.
- It encompasses a large class of multi-agent systems.
- Various POMDP RL algorithms may be used in step 2 to obtain different approaches.
- The approach used in Step 2 is a novel POMDP RL algorithm.

## Step 1) Common Information Approach [Nayyar, Mahajan, Teneketzis 2013]



Define partial function  $\beta_t^i : \mathcal{M}^i \to \mathcal{A}^i$  as follows:

 $eta^i_t(\cdot) := g^i_t(Z_{1:t}, \cdot) \quad ext{such that} \quad eta^i_t = eta^i_t(eta^i_t).$ 

Define coordinator's strategy as follows:

 $\psi_t(Z_{1:t}) := \mathbf{g}_t(Z_{1:t}, \cdot)$  such that  $(\beta_t^1, \dots, \beta_t^n) = \psi_t(Z_{1:t}).$ 

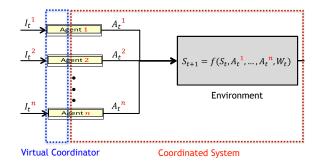
Virtual coordinator observes  $C_t$  and prescribes  $\beta_t =: (\beta_t^1, \ldots, \beta_t^n) \in \mathcal{G}$ .

#### An Equivalent Centralized POMDP

The total expected reward in coordinated system is as follows:

$$\hat{J}(\boldsymbol{\psi}) = \mathbb{E}^{\boldsymbol{\psi}} \left[ \sum_{t=1}^{\infty} \gamma^{t-1} r_t(S_t, \boldsymbol{\beta}_t^1(\boldsymbol{M}_t^1), \dots, \boldsymbol{\beta}_t^n(\boldsymbol{M}_t^n)) \right]$$

(J. Arabneydi, www.cim.mcgill.ca/ jarabney)



- $\Pi_t = \mathbb{P}(S_t, M_t^1, \dots, M_t^n | Z_{1:t-1}, \beta_{1:t-1})$  is an information state.
- Let  $\mathcal{R}$  be the reachable set of the obtained POMDP with action  $\beta \in \mathcal{G}$  and observation  $Z \in \mathcal{Z}$ .
- Given fixed initial distribution  $\pi_1$ , reachable set  $\mathcal{R}$  is at most countable.

#### Incrementally Expanding Representation (IER)

IER is a 3-tuple  $\langle \{\mathcal{X}\}_{N=1}^{\infty}, \tilde{f}, B\} \rangle$  such that

- $\{\mathcal{X}\}_{N=1}^{\infty}$  is a sequence of finite sets such that  $\mathcal{X}_1 \subsetneq \mathcal{X}_2 \subsetneq \ldots \mathcal{X}_N \subsetneq \ldots$ , and  $\mathcal{X}_1$  is singleton say  $\mathcal{X}_1 = \{x^*\}$ . Let  $\mathcal{X} = \lim_{N \to \infty} \mathcal{X}_N$ .
- For any  $\beta$  and z, and  $x \in \mathcal{X}_N$ , we have that  $\tilde{f}(x, \beta, z) \in \mathcal{X}_{N+1}$ .
- B is surjective function that maps  $\mathcal{X}$  to the reachable set s.t.  $\Pi_t = B(X_t)$ .

#### Lemma 1

For every multi-agent system with partial history sharing information structure, there exists at least one IER such that  $\mathcal{X}$  and  $\tilde{f}$  do not depend on unknowns .

Note that B may depend on unknowns.

## Step 2: An Approximate POMDP RL Algorithm

- Construct countable-state MDP Δ with state space X, action space G, dynamics f̃, and reward r̃(B(X<sub>t</sub>), β<sub>t</sub>) := r̂<sub>t</sub>(Π<sub>t</sub>, β<sub>t</sub>).
- Approximate Δ by finite-state MDPs {Δ<sub>N</sub>}<sup>∞</sup><sub>N=1</sub> where state space is X<sub>N</sub>, action space G, dynamics f̃, and reward r̃(B(X<sub>t</sub>), β<sub>t</sub>).
- Apply a generic finite-state RL algorithm  $\zeta$  to learn optimal strategy of  $\Delta_N$ . We assume  $\zeta$  converges to an optimal strategy of  $\Delta_N$ .
- Translate the strategies in  $\Delta_N$  to strategies in the original multi-agent system.

#### Main Theorem

Let  $J^*$  be the optimal performance (reward) of the original MAS system and  $\hat{J}$  be the performance under the learned strategy. Then,

$$J - \tilde{J} \leq \epsilon_N,$$

where  $\epsilon_N = \frac{2\gamma^{\tau_N}}{1-\gamma}(r_{max} - r_{min}) \le \frac{2\gamma^N}{1-\gamma}(r_{max} - r_{min})$  and  $\tau_N$  is a model dependent parameter that  $\tau_N \ge N$ . Note that error goes to zero **exponentially** in N.

## Multi-Agent RL Algorithm

- (1) Given  $\epsilon > 0$ , choose N such that  $\frac{2\gamma^N}{1-\gamma}(r_{max} r_{min}) \leq \epsilon$ . Then, construct  $\Delta_N$ ; particularly, state space  $\mathcal{X}_N$  and dynamics  $\tilde{f}$ .
- (2) At iteration k, ζ chooses prescriptions β<sub>k</sub> = (β<sup>1</sup><sub>k</sub>,...,β<sup>n</sup><sub>k</sub>). (Agents have access to a common random generator to explore consistently). Agent i takes action a<sup>i</sup><sub>k</sub> based on prescription β<sup>i</sup><sub>k</sub> and local information m<sup>i</sup><sub>k</sub>:

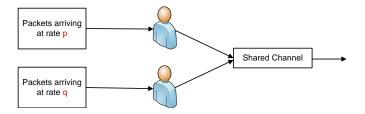
$$a_k^i = \beta_k^i(m_k^i), \forall i.$$

(3) Based on taken actions, system incurs reward  $r_k$ , evolves, and generates common observation  $z_k$  that is observable to every agent. Agents consistently compute next state as follows

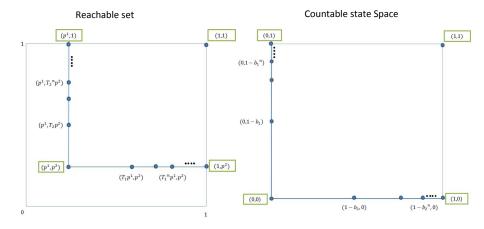
$$x_{k+1} = \tilde{f}(x_k, \beta_k, z_k) \in \mathcal{X}_N.$$

- (4) ζ learns (updates) the coordinated strategy according to observed reward r<sub>k</sub> by performing prescriptions β<sub>k</sub> at state x<sub>k</sub> and transiting to state x<sub>k+1</sub>.
- (5)  $k \leftarrow k + 1$ , and got step 2 until termination.

## Example: Multi-Access Broadcasting Channel (MABC)



- $S_t = (S_t^1, S_t^2) \in \{0, 1\}^2$ ,  $A_t^i \in \{0, 1\}$ .
- Packets arrive at user *i* according to independent Bernoulli process with rate *p<sup>i</sup>* ∈ (0, 1) tat are unknown.
- Each user transmits if it has a packet i.e.  $A_t^i \leq S_t^i$ .
- Information at each agent  $I_t^i = \{S_t^i, A_{1:t-1}^1, A_{1:t-1}^2\}$ .
- The objective is to maximize the throughput; hence, reward function  $r(S_t, A_t^1, A_t^2) = A_t^1 + A_t^2 2A_t^1 A_t^2$ .



(J. Arabneydi, www.cim.mcgill.ca/ jarabney)

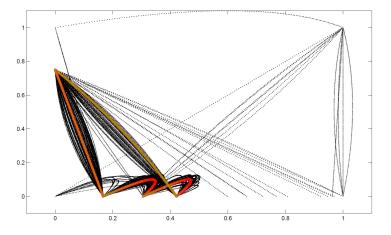
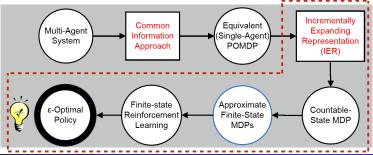


Figure: This figures shows the learning process of MDP  $\Delta_N$  in a few snapshots. Numerical values:  $b_1 = 0.25, b_2 = 0.83, N = 50, \gamma = 0.99, p^1 = 0.3, p^2 = 0.6.$ 

## Summary

- Given  $\epsilon > 0$ , we presented a (model-based or model-free) RL algorithm that guarantees  $\epsilon$ -optimality for a large class of multi-agent systems with partial history sharing.
- Our approach has two main steps: Common Information Approach + POMDP RL.
- We provided a novel approach for approximate solution of POMDPs (model known and unknown model).
- We developed a multi-agent Q-learning algorithm for MABC problem that converges to optimal policy.
- The obtained error bound is conservative and in practice, the actual error is less.



## Thank You

Poster number: T47

"Reinforcement Learning in Decentralized Stochastic Control Systems with Partial History Sharing", Accepted in IEEE American Control Conference (ACC), Jul., 2015.

#### Main Property

When state  $x_t$  steps out of  $\Delta_N$ , it will come back to  $\mathcal{X}_N$  after a finite time.

This property is required for a model to have every pair of state and action in  $\Delta_N$  visited infinitely often. In the literature, different versions of this property have been considered.

- There exists an oracle that provides the agent with exact information about the current state, upon request; however, using the oracle is expensive and reserved for the learning phase.
- In sensor networks, where the communication is sensing is cheap but communication is expensive.
- Agents have access to "reset" or "off-line" simulation.
- $\Delta$  is such that after a finite time, the state will come back to  $\Delta_N$ , so it is better to wait until the state comes back.