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RL as a Tool

To learn

Finite MDP

State Aliasing

Generalization

To apply To learn

Rather than “Should RL work?” . . .

. . . “Does RL work?”

− When not: “How can we make it work?”
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TEXPLORE: Real-Time Sample-Efficient
Reinforcement Learning for Robots

Todd Hester and Peter Stone

Machine Learning , 2013
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Reinforcement Learning
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Can run in real-time, but not very sample efficient
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Reinforcement Learning

Model-free Methods
Learn a value function directly from interaction with environment

Can run in real-time, but not very sample efficient

Model-based Methods
Learn model of transition and reward dynamics

Update value function using model (planning)

Can update action-values without taking real actions in the world
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Mortality

Robot’s “lifetime” short compared to size of world

(Still need to act in real time)

Problem: Cannot explore everywhere
Choose where not to explore

Idea: Learn multiple possible models and compare them

Only explore states that are both uncertain in model and
promising for final policy
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Fuel World

Most of state space is very predictable

But fuel stations have varying costs

Want to explore mainly fuel stations, and particularly ones on
short path to goal
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Fuel World Behavior

Agent explores randomly at first

Agent focuses its exploration on fuel stations near the shortest
path to the goal, trying a different fuel station each episode.

Agent finds near-optimal policies.
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Velocity Control: Real-Time Need

Vehicle upgraded to run autonomously by adding shift-by-wire,
steering, and braking actuators.

10 second episodes (at 20 Hz: 200 samples / episode)
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Velocity Control

State:
◮ Current Velocity
◮ Desired Velocity
◮ Accelerator Pedal Position
◮ Brake Pedal Position

Actions:
◮ Do nothing
◮ Increase/decrease brake position by 0.1
◮ Increase/decrease accelerator position

by 0.1

Reward: -10.0 * velocity error (m/s)
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Desiderata

1 Algorithm must learn in very few actions (be sample efficient )
2 Algorithm must act continually in real-time (while learning)
3 Algorithm must handle continuous state
4 Algorithm must handle delayed actions
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Common Approaches

Algorithm Citation Sample Real Continuous Delay
Efficient Time

R-Max Brafman 2001 Yes No No No
Q-Learning Watkins 1989 No Yes No No
with F.A. Sutton & Barto 1998 No Yes Yes No
SARSA Rummery & Niranjan 1994 No Yes No No
GPRL Deisenroth & Rasmussen 2011 Yes No Yes No
BOSS Asmuth et al 2009 Yes No No No
Bayesian DP Strens 2000 Yes No No No
MBBE Dearden et al 1999 Yes No No No
MBS Walsh et al 2009 Yes No No Yes
Dyna Sutton 1990 No Yes No No
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The TEXPLORE Algorithm

1 Limits exploration to be sample efficient
2 Selects actions continually in real-time
3 Handles continuous state
4 Handles actuator delays

Available publicly as a ROS package:
www.ros.org/wiki/rl-texplore-ros-pkg
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Challenge 1: Sample Efficiency

Treat model learning as a supervised
learning problem

◮ Input: State and Action
◮ Output: Distribution over next states

and reward

Factored model: Learn a separate
model to predict each next state feature
and reward

Decision Trees: Split state space into
regions with similar dynamics

Peter Stone (UT Austin) PRISM 14



Random Forest Model

Average predictions of m different decision
trees

Each tree represents a hypothesis of the
true dynamics of the domain
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Random Forest Model

Average predictions of m different decision
trees

Each tree represents a hypothesis of the
true dynamics of the domain

Acting greedily w.r.t. the average model
balances predictions of optimistic and
pessimistic models

Limits the agent’s exploration to
state-actions that appear promising, while
avoiding those which may have negative
outcomes
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Challenge 2: Real-Time Action Selection

Model update can take too long

Planning can take too long
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Real-Time Model Based Architecture (RTMBA)

Model learning and planning on
parallel threads
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Real-Time Model Based Architecture (RTMBA)

Model learning and planning on
parallel threads

Action selection is not restricted
by their computation time

Use sample-based planning
(anytime)

Mutex locks on shared data
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Challenge 3: Continuous State

Use regression trees to model
continuous state

Each tree has a linear regression
model at its leaves
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Challenge 3: Continuous State

Use regression trees to model
continuous state

Each tree has a linear regression
model at its leaves

Discretize state space for value
updates from UCT, but still plan over
continuously valued states
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Delays make domain non-Markov, but k-Markov

Peter Stone (UT Austin) PRISM 19



Challenge 4: Actuator Delays

Delays make domain non-Markov, but k-Markov

Provide model with previous k actions (Similar to U-Tree
[McCallum 1996])

Trees can learn which delayed actions are relevant

Peter Stone (UT Austin) PRISM 19



Challenge 4: Actuator Delays

Delays make domain non-Markov, but k-Markov

Provide model with previous k actions (Similar to U-Tree
[McCallum 1996])

Trees can learn which delayed actions are relevant

UCT can plan over augmented state-action histories easily

Peter Stone (UT Austin) PRISM 19



Autonomous Vehicle

Upgraded to run
autonomously by adding
shift-by-wire, steering, and
braking actuators.

Vehicle runs at 20 Hz.

Agent must provide
commands at this frequency.
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Uses ROS [Quigley et al 2009]

http://www.ros.org/wiki/rl_msgs
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Simulation Experiments

Exploration Approaches
Epsilon-Greedy

Boltzmann Exploration

Use merged BOSS-like model

Use random model each episode

Sample Efficient Methods
BOSS [Asmuth et al 2009]

Bayesian DP [Strens 2000]

Gaussian Process RL [Deisenroth & Rasmussen 2011]
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Simulation Experiments

Continuous Models
Tabular Models

Gaussian Process RL [Deisenroth & Rasmussen 2011]

KWIK linear regression [Strehl & Littman 2007]

Real-Time Architectures
Real Time Dynamic Programming [Barto et al 1995]

Dyna [Sutton 1990]

Parallel Value Iteration

Actuator Delays
Model Based Simulation [Walsh et al 2009]
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Challenge 1: Sample Efficiency
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Challenge 2: Real-Time Action Selection
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Challenge 3: Modeling Continuous Domains
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Challenge 4: Handling Delayed Actions
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On the physical vehicle

But, does it work on the actual vehicle?
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On the physical vehicle
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TEXPLORE Summary

TEXPLORE can:
1 Learn in few samples
2 Act continually in real-time
3 Learn in continuous domains
4 Handle actuator delays

TEXPLORE code has been
released as a ROS package:
www.ros.org/wiki/rl-texplore-ros-pkg
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Practical RL
To learn

Finite MDP

State Aliasing

Generalization

To apply To learn

Representation
◮ Selecting the Algorithm: parameterized domains [K.&S., MLJ 2011]
◮ Adapting Representation: NEAT+Q [Whiteson & S., JMLR 2006]

Interaction
◮ With adversaries: CMLES [Chakraborty & S., ICML 2010]
◮ With ad hoc teammates: PLASTIC [Barrett, thesis 2014]
◮ With people: TAMER [Knox & S., AAMAS 2010]

Synthesis
◮ Of Algorithms: Layered Learning [S., MIT Press 2000]
◮ Of Concepts: Fitted R-MAXQ [Jong & S., ECML 2009]

Mortality
◮ Leverage the Past: Transfer Learning [Taylor, S., & Liu, JMLR 2007]
◮ Acknowledge a Finite Future: TEXPLORE [Hester & S., MLJ 2013]
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UT Austin Villa 2014
RoboCup 3D Simulation League Champion via

Overlapping Layered Learning

Patrick MacAlpine, Mike Depinet, and Peter Stone

AAAI , 2015
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Layered Learning

• For domains too complex for tractably mapping state features S
7−→ outputs O

• Hierarchical subtask decomposition given: {L1, L2, . . . , Ln}
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Layered Learning

• For domains too complex for tractably mapping state features S
7−→ outputs O

• Hierarchical subtask decomposition given: {L1, L2, . . . , Ln}

• Machine learning: exploit data to train, adapt

• Synthesis: Learning in one layer feeds into next layer

Individual Behaviors

Team Behaviors

Adversarial Behaviors

Environment

High Level Goals

Opportunities
Machine Learning

Multi-Agent Behaviors

World State
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Layered Learning in Practice

First applied in simulated robot soccer [Stone & Veloso, ’97]

Strategic Level Example
L1 individual ball interception
L2 multiagent pass evaluation
L3 team pass selection
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Layered Learning in Practice

First applied in simulated robot soccer [Stone & Veloso, ’97]

Strategic Level Example
L1 individual ball interception
L2 multiagent pass evaluation
L3 team pass selection

Later applied on real robots [Stone, Kohl, & Fidelman, ’06]

Strategic Level Example
L1 individual fast walking
L2 individual ball control
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Layered Learning Paradigms

DESCRIPTIONS:

Sequential Layered Learning: Freeze parameters of layer after
learning before learning of the next layer

Concurrent Layered Learning: Keep parameters of layer open
during learning of the next layer
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Layered Learning Paradigms

PROBLEMS:

Sequential Layered Learning: Can be too limiting in the joint layer
policy seach space

Concurrent Layered Learning: The increased dimensionality can
make learning harder or intractible
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Layered Learning Paradigms

SOLUTION:

Overlapping Layered Learning: Tradeoff between freezing or
keeping open previous learned layers

Optimizes “seam” or overlap between behaviors: keeps some parts of
previously learned layers open during subsequent learning

Peter Stone (UT Austin) PRISM 34



Overlapping Layered Learning
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Overlapping Layered Learning

Combining Independently Learned Behaviors: Behaviors learned
indpendently and then combined by relearning subset of behaviors’
parameters
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Overlapping Layered Learning

Combining Independently Learned Behaviors: Behaviors learned
indpendently and then combined by relearning subset of behaviors’
parameters
Partial Concurrent Layered Learning: Part, but not all, of a previously
learned layer’s behaviors are left open
Previous Learned Layer Refinement: After a pair of layers is learned, part
or all of the initial layer is unfrozen

Peter Stone (UT Austin) PRISM 35



RoboCup 3D Simulation Domain

Teams of 11 vs 11 autonomous robots play soccer

Realistic physics using Open Dynamics Engine (ODE)

Simulated robots modeled after Aldebaran Nao robot

Robot receives noisy visual information about environment

Robots can communicate over limited bandwidth channel
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RoboCup Champions 2011, 2012
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RoboCup Champions 2011, 2012
Humanoid Walk Learning via Layered Learning and CMA-ES

• Parameterized double linear inverted pendulum model

Peter Stone (UT Austin) PRISM 37



RoboCup Champions 2011, 2012
Humanoid Walk Learning via Layered Learning and CMA-ES

• Parameterized double linear inverted pendulum model

CMA-ES
[Hansen, ’09]

• Stochastic, derivative-free, numerical optimization method
• Candidates sampled from multidimensional Gaussian

Peter Stone (UT Austin) PRISM 37



RoboCup Champions 2011, 2012
Humanoid Walk Learning via Layered Learning and CMA-ES

• Parameterized double linear inverted pendulum model

CMA-ES
[Hansen, ’09]

• Stochastic, derivative-free, numerical optimization method
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RoboCup Champions 2011, 2012
Humanoid Walk Learning via Layered Learning and CMA-ES

• Parameterized double linear inverted pendulum model

CMA-ES
[Hansen, ’09]

• Stochastic, derivative-free, numerical optimization method
• Candidates sampled from multidimensional Gaussian

− Mean maximizes likelihood of previous successes
− Covariance update controls search step sizes

Initial walk No layered learning 2 layers
3 layers Final walk Champs*2
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Learned Layers

19 learned behaviors for standing up, walking, and kicking
◮ CILB, PCLL, PLLR

Over 500 parameters optimized during the course of learning
◮ frozen, passed, seeded

Peter Stone (UT Austin) PRISM 38



Dribbling and Kicking the Ball in the Goal

Four different walk parameter sets
◮ Target/sprint/position + approach ball to kick

Learn fixed kick
Combine kick with walk : combine independent layers (CILB)

◮ Overlap kick parameters for positioning
Final walk and kick

Peter Stone (UT Austin) PRISM 39



Scoring on a Kickoff

Kickoffs indirect (2 players must touch to score)
Learn fixed kick
Learn touch behavior interferes
Combine kick with touch

◮ Relearn position patterns: combine independent layers (CILB)
◮ Learn new timing parameter: partial concurrent (PCLL)
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Impact of Overlapping Layered Learning

1000 games vs. top 3 teams from 2013
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Impact of Overlapping Layered Learning

1000 games vs. top 3 teams from 2013

Average Goal Difference
Opponent Full Team No Kickoff Dribble Only
apollo3d 2.703 (0.041) 2.062 (0.038) 1.861 (0.034)

UTAustinVilla2013 1.589 (0.036) 1.225 (0.033) 0.849 (0.025)
fcportugal3d 3.991 (0.051) 3.189 (0.048) 1.584 (0.030)

No Kickoff: On kickoff, kick ball deep into opponent’s end

Dribble Only: No kicking
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Repetition on Different Robot Types

Type 0: Standard Nao model

Type 1: Longer legs and arms

Type 2: Quicker moving legs

Type 3: Wider hips and longest legs and arms

Type 4: Added toes to foot
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Repetition on Different Robot Types

Type 0: Standard Nao model

Type 1: Longer legs and arms

Type 2: Quicker moving legs

Type 3: Wider hips and longest legs and arms

Type 4: Added toes to foot

Avg. Goal Difference per Robot Type
Opponent Type 0 Type 1 Type 2 Type 3 Type 4
apollo3d 1.787 1.819 1.820 1.543 2.827

UTAustinVilla2013 0.992 0.892 1.276 0.573 1.141
fcportugal3d 2.423 3.025 3.275 2.678 4.033
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Repetition on Different Robot Types

Type 0: Standard Nao model

Type 1: Longer legs and arms

Type 2: Quicker moving legs

Type 3: Wider hips and longest legs and arms

Type 4: Added toes to foot

Avg. Goal Difference per Robot Type
Opponent Type 0 Type 1 Type 2 Type 3 Type 4
apollo3d 1.787 1.819 1.820 1.543 2.827

UTAustinVilla2013 0.992 0.892 1.276 0.573 1.141
fcportugal3d 2.423 3.025 3.275 2.678 4.033

Computation per type
≈ 700k parameter sets evaluated
≈ 1.5 years compute time (≈ 50 hours on condor cluster)
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RoboCup 2014

Won competition with undefeated record: outscored opps 52–0

Opponent Avg. Goal Diff. Record (W-L-T) Goals (F/A) KO Score %
BahiaRT 2.075 (0.030) 990-0-10 2092/17 96.2

FCPortugal 2.642 (0.034) 986-0-14 2748/106 83.4
magmaOffenburg 2.855 (0.035) 990-0-10 2864/9 88.3

RoboCanes 3.081 (0.046) 974-0-26 3155/74 69.4
FUT-K 3.236 (0.039) 998-0-2 3240/4 96.3

SEU_Jolly 4.031 (0.062) 995-0-5 4034/3 87.6
KarachiKoalas 5.681 (0.046) 1000-0-0 5682/1 87.5

ODENS 7.933 (0.041) 1000-0-0 7933/0 92.1
HfutEngine 8.510 (0.050) 1000-0-0 8510/0 94.7
Mithras3D 8.897 (0.041) 1000-0-0 8897/0 90.4
L3M-SIM 9.304 (0.043) 1000-0-0 9304/0 93.7
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RoboCup 2014

Won competition with undefeated record: outscored opps 52–0

Opponent Avg. Goal Diff. Record (W-L-T) Goals (F/A) KO Score %
BahiaRT 2.075 (0.030) 990-0-10 2092/17 96.2

FCPortugal 2.642 (0.034) 986-0-14 2748/106 83.4
magmaOffenburg 2.855 (0.035) 990-0-10 2864/9 88.3

RoboCanes 3.081 (0.046) 974-0-26 3155/74 69.4
FUT-K 3.236 (0.039) 998-0-2 3240/4 96.3

SEU_Jolly 4.031 (0.062) 995-0-5 4034/3 87.6
KarachiKoalas 5.681 (0.046) 1000-0-0 5682/1 87.5

ODENS 7.933 (0.041) 1000-0-0 7933/0 92.1
HfutEngine 8.510 (0.050) 1000-0-0 8510/0 94.7
Mithras3D 8.897 (0.041) 1000-0-0 8897/0 90.4
L3M-SIM 9.304 (0.043) 1000-0-0 9304/0 93.7

After: 11,000 games: won all by 67 (no losses)
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Highlights from Final vs. RoboCanes (University of Miami)
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Highlights from Final vs. RoboCanes (University of Miami)

More info: www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
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Practical RL
To learn

Finite MDP

State Aliasing

Generalization

To apply To learn

Representation
◮ Selecting the Algorithm: parameterized domains [K.&S., MLJ 2011]
◮ Adapting Representation: NEAT+Q [Whiteson & S., JMLR 2006]

Interaction
◮ With adversaries: CMLES [Chakraborty & S., ICML 2010]
◮ With ad hoc teammates: PLASTIC [Barrett, thesis 2014]
◮ With people: TAMER [Knox & S., AAMAS 2010]

Synthesis
◮ Of Algorithms: Layered Learning [S., MIT Press 2000]
◮ Of Concepts: Fitted R-MAXQ [Jong & S., ECML 2009]

Mortality
◮ Leverage the Past: Transfer Learning [Taylor, S., & Liu, JMLR 2007]
◮ Acknowledge a Finite Future: TEXPLORE [Hester & S., MLJ 2013]
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Making Friends on the Fly:
Advances in Ad Hoc Teamwork

Samuel Barrett, Katie Genter, and Peter Stone

AAAI , 2015; AAMAS , 2015
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Ad Hoc Teamwork [Stone et al., AIJ 2013]

Only in control of a single
agent or subset of agents

Unknown teammates

Shared goals

No pre-coordination
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Ad Hoc Teamwork [Stone et al., AIJ 2013]

Only in control of a single
agent or subset of agents

Unknown teammates

Shared goals

No pre-coordination

Examples in humans:

Pick up soccer

Accident response
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PLASTIC: Planning and Learning to Adapt Swiftly to
Teammates to Improve Cooperation
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Testbed Domains

Agent replaces single teammate in otherwise coherent team

Adapts based on knowledge learned from previous teammates
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Practical RL
To learn

Finite MDP

State Aliasing

Generalization

To apply To learn

Representation

Interaction

Synthesis

Mortality
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