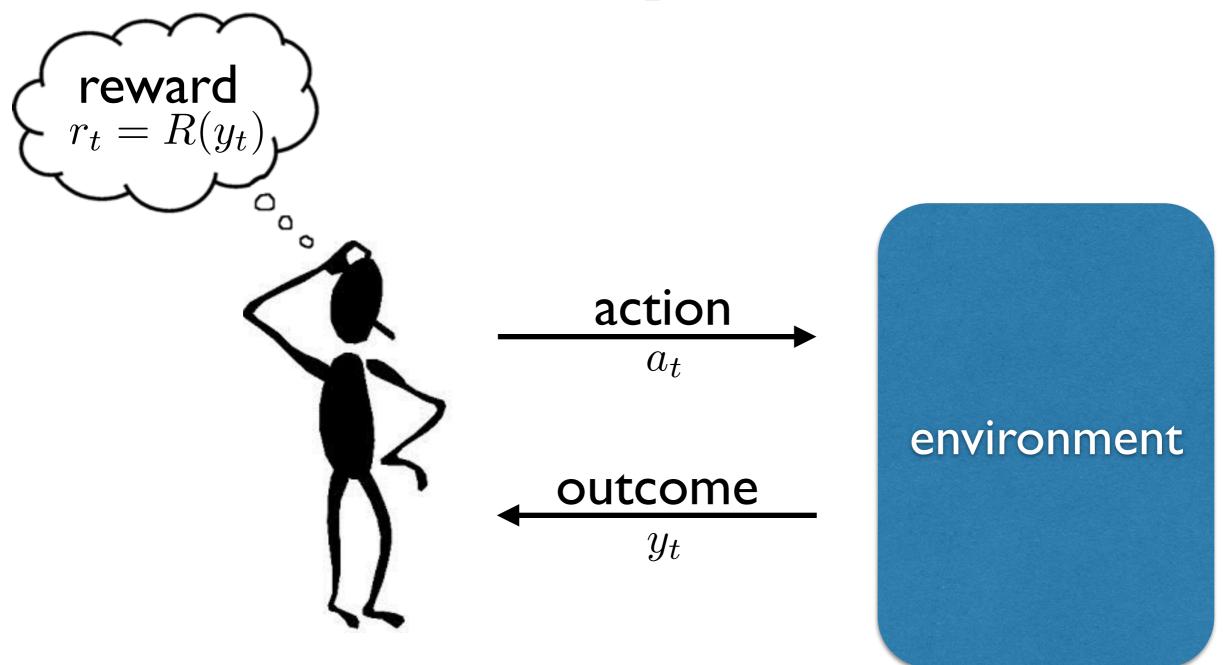
Generalization and Exploration via Value Function Randomization

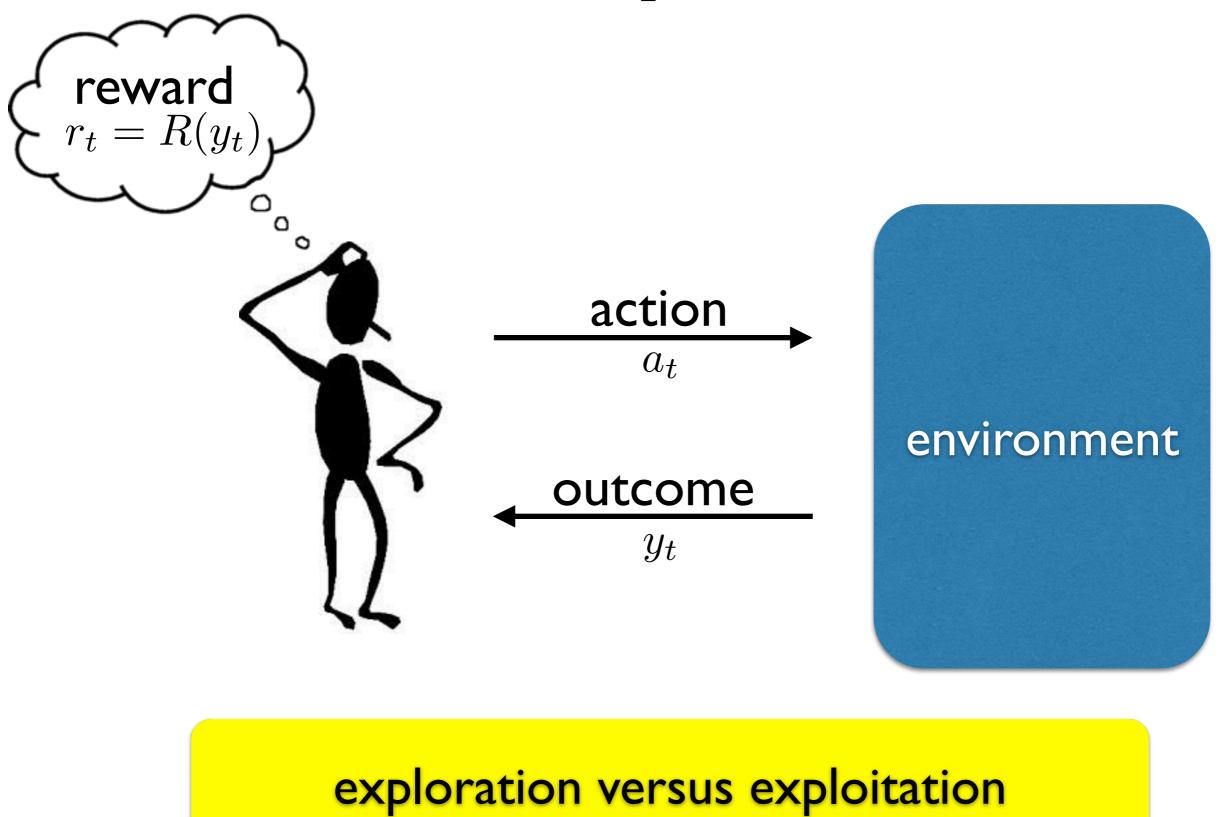
Benjamin Van Roy

Collaborators: Hamid Maei, Ian Osband, Dan Russo, Zheng Wen

Online Optimization



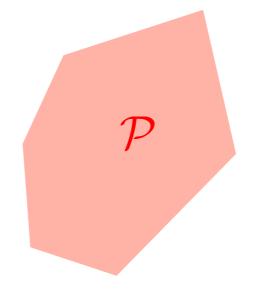
Online Optimization



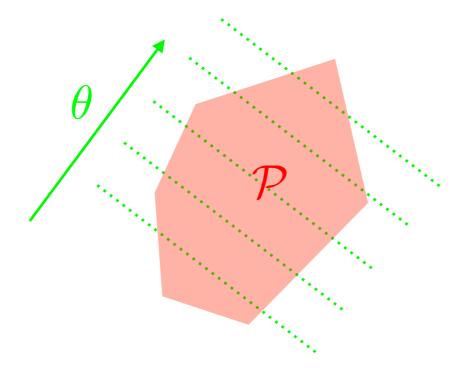
dithering	
sometimes exploit sometimes randomize	
0.7 0.525 0.35 0.175 0 1 2 3 4 action	
statistically inefficient fails to write off bad actions	

dithering	UCB	
sometimes exploit sometimes randomize	maximize optimistic estimate	
$\begin{array}{c} 0.7 \\ \bullet 0.525 \\ 0.35 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ action \\ \end{array}$	$\begin{array}{c} 30 \\ 0 \\ 1 \\ 1 \\ 22.5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ action \end{array}$	
statistically inefficient fails to write off bad actions	near-optimal exploration-exploitation tradeoff?	

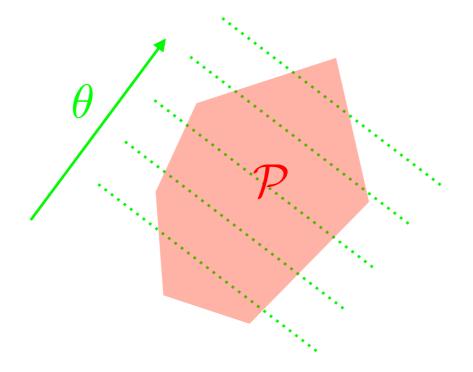
dithering	UCB	Thompson sampling
sometimes exploit sometimes randomize	maximize optimistic estimate	sample ~ P(a is optimal)
0.7 0.525 0.35 0.175 0 1 2 3 4 action	$\begin{array}{c} 30 \\ 0 \\ 1 \\ 22.5 \\ 7.5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ action \end{array}$	0.5 0.375 0.25 0.125 0 1 2 3 4 action
statistically inefficient fails to write off bad actions	near-optimal exploration-exploitation tradeoff?	better than UCB?



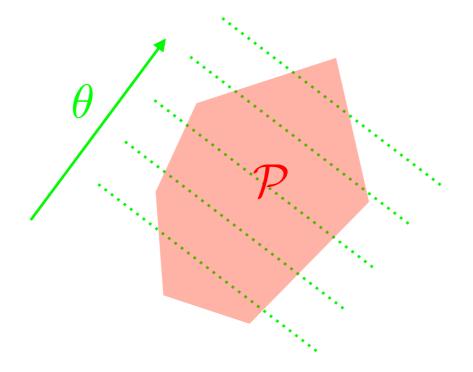
Polytopic action set	$a_t \in \mathcal{P}$	
----------------------	-----------------------	--



Polytopic action set	$a_t \in \mathcal{P}$
Linear bandit feedback	$r_t = \theta^\top a_t + N(0, \sigma^2)$



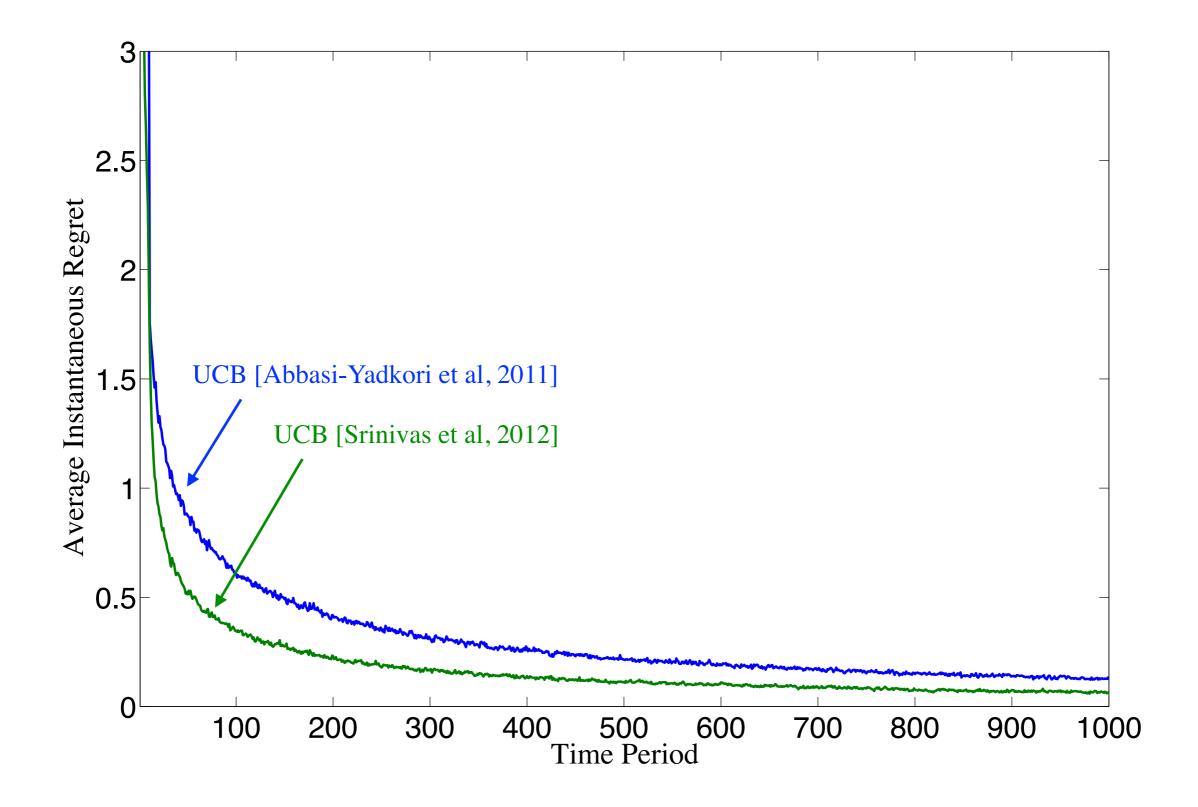
Polytopic action set	$a_t \in \mathcal{P}$
Linear bandit feedback	$r_t = \theta^\top a_t + N(0, \sigma^2)$
Knowledge representation	$\theta_t \sim N(\mu_t, \Sigma_t) \text{or} \theta_t \in \Theta_t$

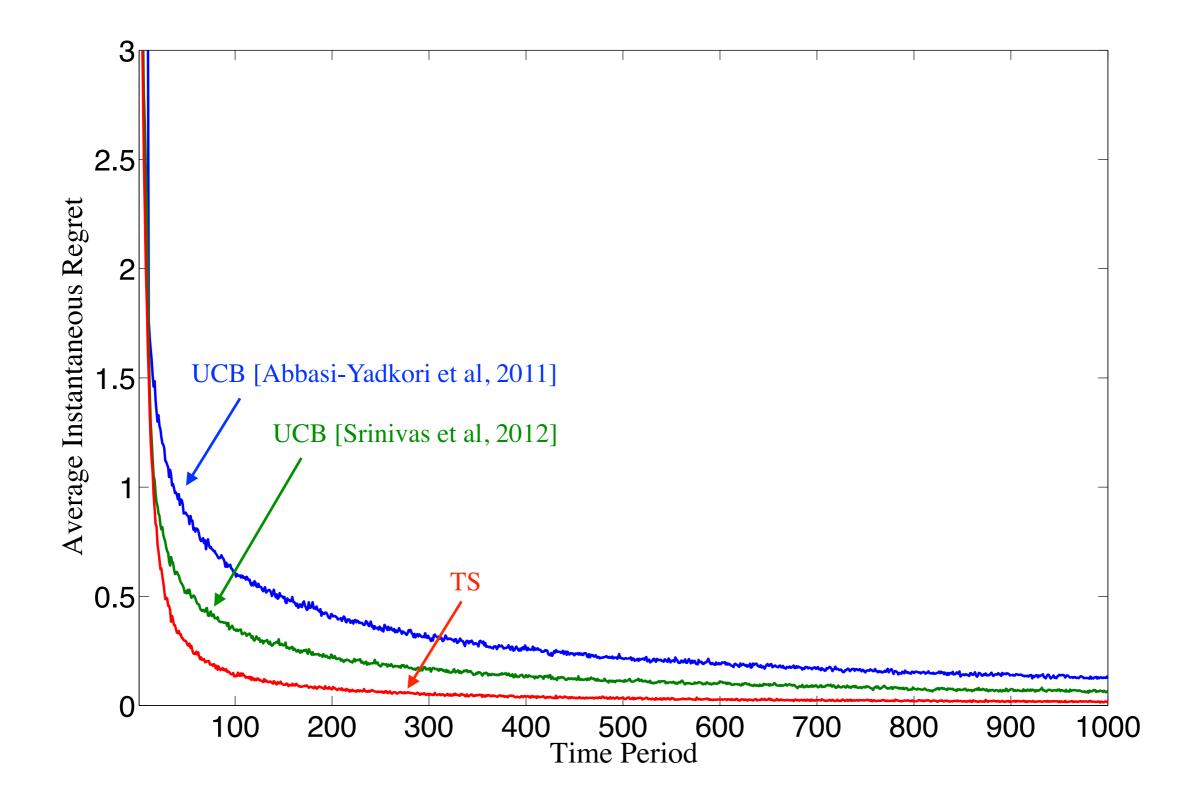


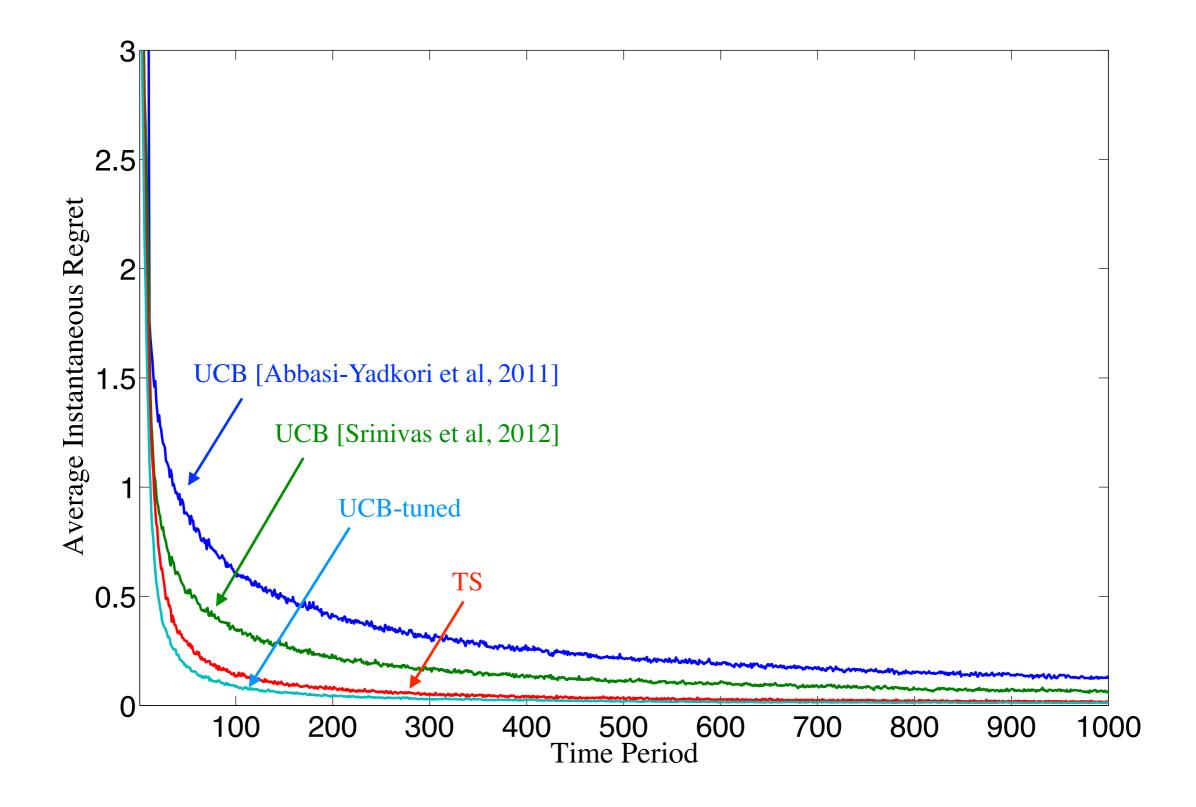
Polytopic action set	$a_t \in \mathcal{P}$
Linear bandit feedback	$r_t = \theta^\top a_t + N(0, \sigma^2)$
Knowledge representation	$\theta_t \sim N(\mu_t, \Sigma_t) \text{or} \theta_t \in \Theta_t$
	ellipsoid

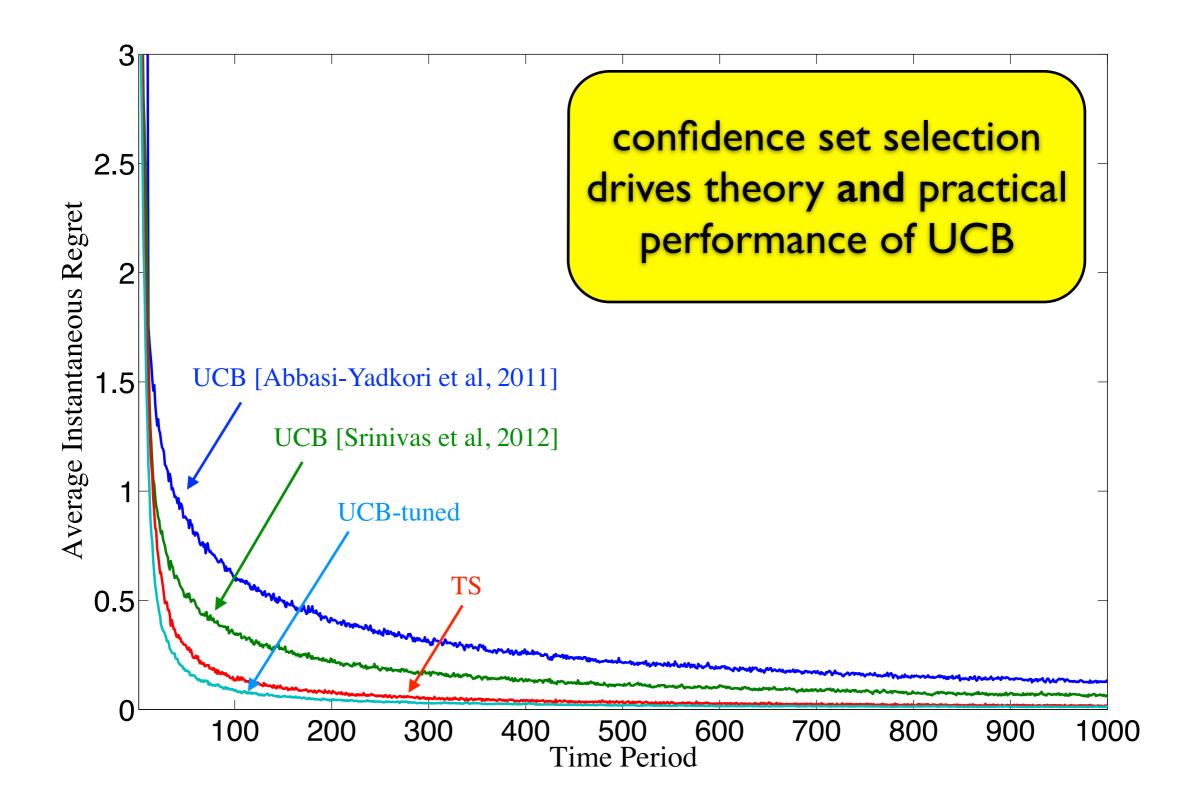
RLDM 2015

Learning to Optimize









• Consider online linear programming

- Consider online linear programming
- Thompson sampling

sample:
$$\hat{\theta}_t \sim N(\mu_t, \Sigma_t)$$

optimize: $\max_{a_t \in \mathcal{P}} \hat{\theta}_t^\top a_t$

- Consider online linear programming
- Thompson sampling

sample:
$$\hat{\theta}_t \sim N(\mu_t, \Sigma_t)$$

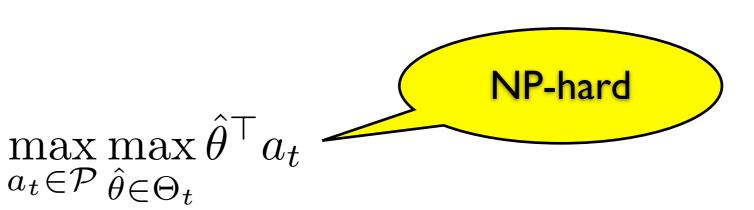
optimize: $\max_{a_t \in \mathcal{P}} \hat{\theta}_t^\top a_t$

 $\max_{a_t \in \mathcal{P}} \max_{\hat{\theta} \in \Theta_t} \hat{\theta}^\top a_t$

- Consider online linear programming
- Thompson sampling

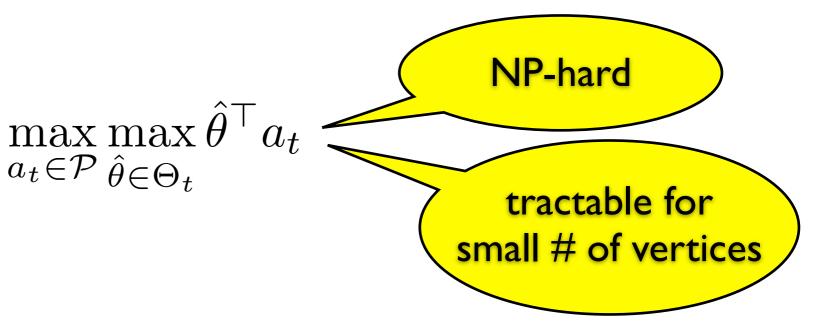
sample:
$$\hat{\theta}_t \sim N(\mu_t, \Sigma_t)$$

optimize: $\max_{a_t \in \mathcal{P}} \hat{\theta}_t^\top a_t$



- Consider online linear programming
- Thompson sampling

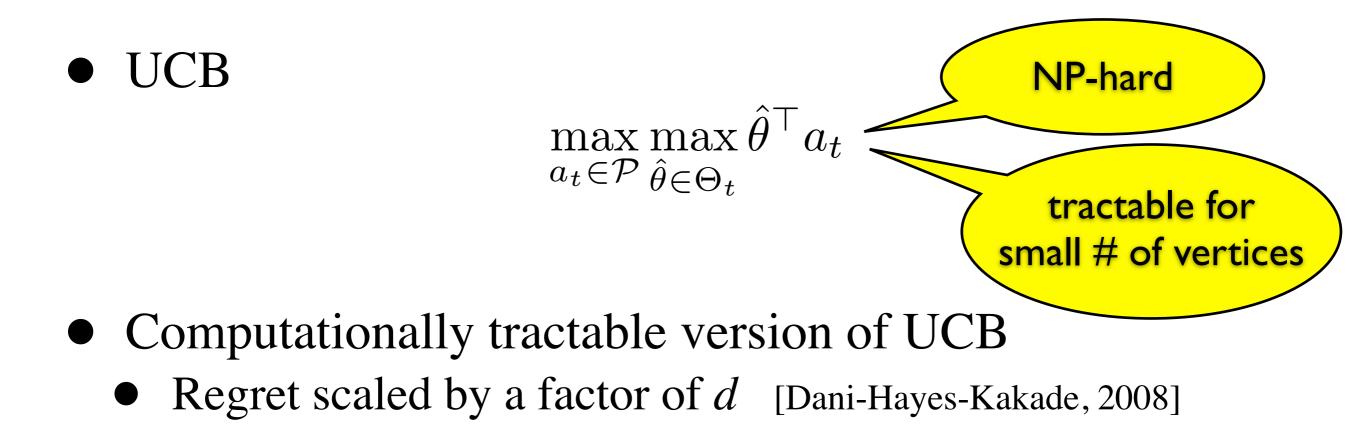
sample: $\hat{\theta}_t \sim N(\mu_t, \Sigma_t)$ optimize: $\max_{a_t \in \mathcal{P}} \hat{\theta}_t^\top a_t$



- Consider online linear programming
- Thompson sampling

sample:
$$\hat{\theta}_t \sim N(\mu_t, \Sigma_t)$$

optimize: $\max_{a_t \in \mathcal{P}} \hat{\theta}_t^\top a_t$



Learning to Optimize

- Main points
 - TS outperforms UCB designed for analysis
 - TS slightly underperforms well-tuned UCB
 - TS often tractable when UCB is not
 - TS outperforms UCB designed for tractability

• Main points

- TS outperforms UCB designed for analysis
- TS slightly underperforms well-tuned UCB
- TS often tractable when UCB is not
- TS outperforms UCB designed for tractability
- Russo-VR (2013): Posterior Sampling / Eluder Dimension
 - UCB/TS: TS \cong randomized approximation of UCB
 - UCB results \rightarrow TS results
 - problem-specific UCB results
 - bandit feedback, general reward models (dependencies among actions)
 - contextual, cautious, adversarial, etc.

• Main points

- TS outperforms UCB designed for analysis
- TS slightly underperforms well-tuned UCB
- TS often tractable when UCB is not
- TS outperforms UCB designed for tractability
- Russo-VR (2013): Posterior Sampling / Eluder Dimension
 - UCB/TS: TS \cong randomized approximation of UCB
 - UCB results \rightarrow TS results
 - problem-specific UCB results
 - bandit feedback, general reward models (dependencies among actions)
 - contextual, cautious, adversarial, etc.
- Russo-VR (2014): IT Analysis of Thompson Sampling
 - simple analysis based on information theory
 - handles general feedback information structures

• A 1-sparse case

$$r_t = \theta^\top a_t$$

$$\theta \in \{0, 1\}^N \quad \|\theta\|_0 = 1$$

uniform prior

 $a_t =$ "average over subset of components"

• A 1-sparse case

$$r_t = \theta^\top a_t$$

$$\theta \in \{0,1\}^N \quad \|\theta\|_0 = 1$$

uniform prior

 $a_t =$ "average over subset of components"

- UCB/TS require $\Omega(d)$ samples to identify
 - Rule out one action per period

• A 1-sparse case

$$r_t = \theta^\top a_t$$

$$\theta \in \{0,1\}^N \quad \|\theta\|_0 = 1$$

uniform prior

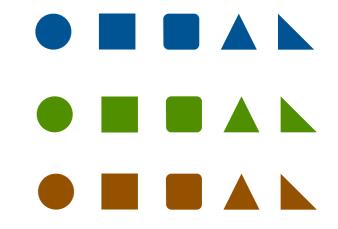
 $a_t =$ "average over subset of components"

- UCB/TS require $\Omega(d)$ samples to identify
 - Rule out one action per period
- Easy to design algorithms for which $\log_2(d)$ suffice
 - Binary search

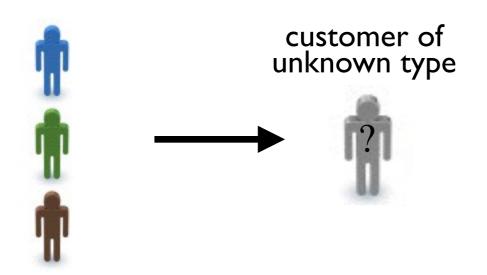
Learning to Optimize

N customer types

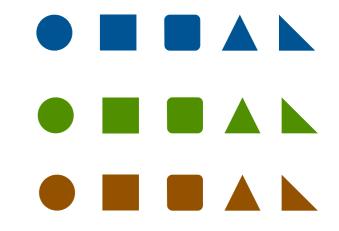
many products, each geared toward a type

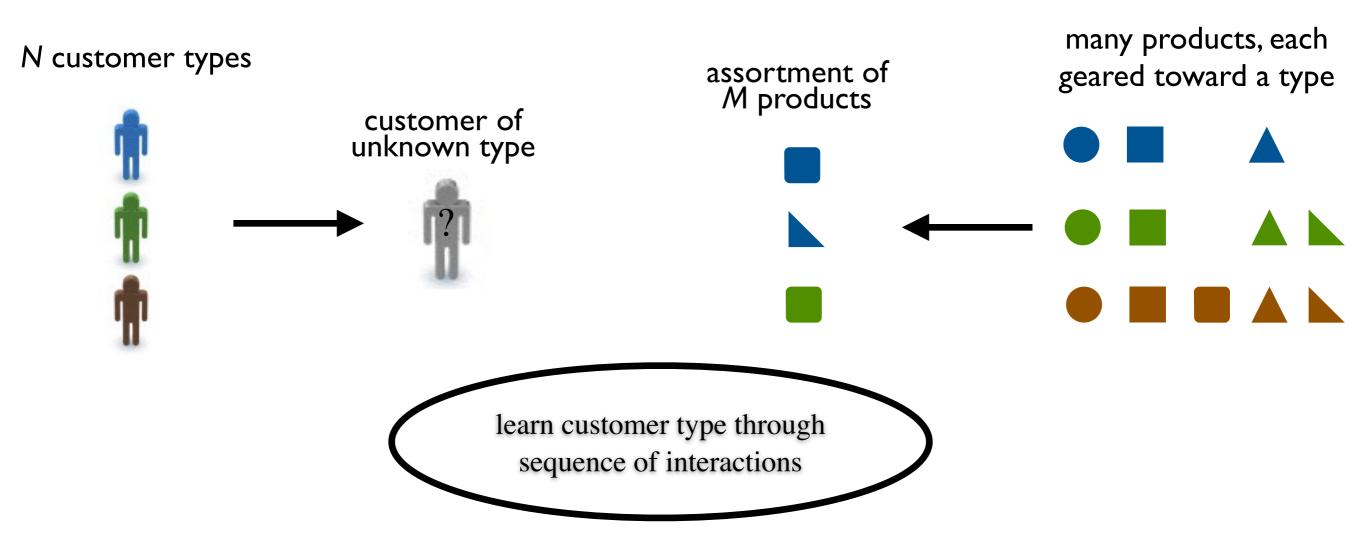


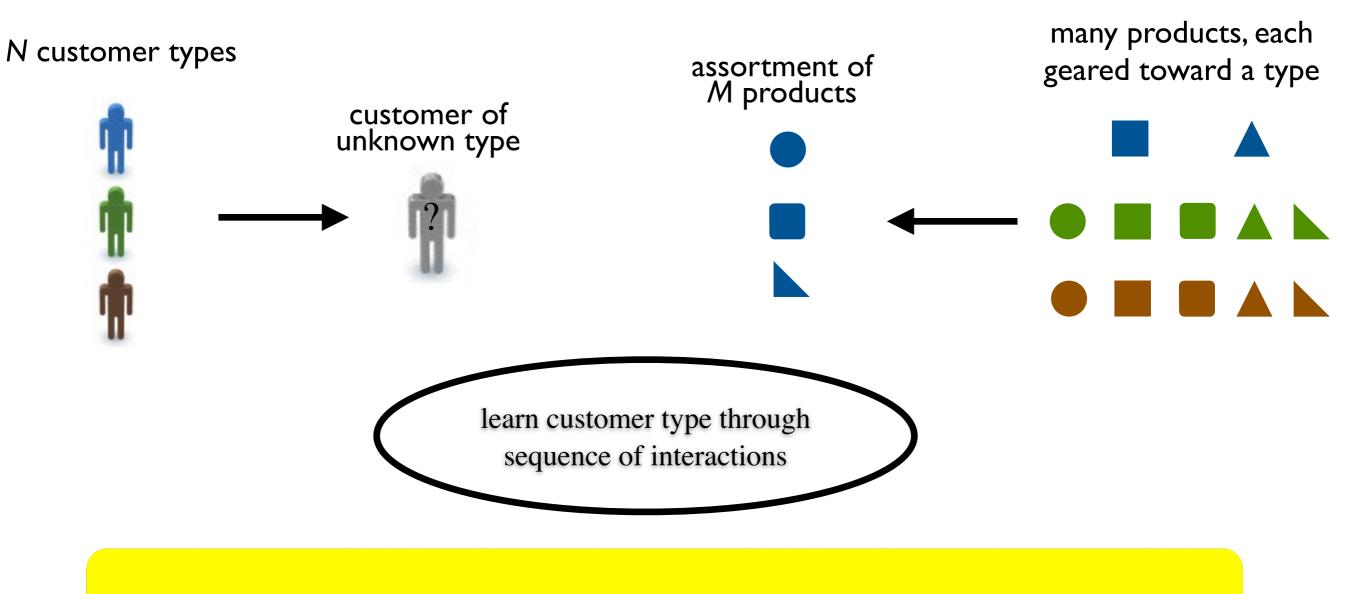
N customer types



many products, each geared toward a type

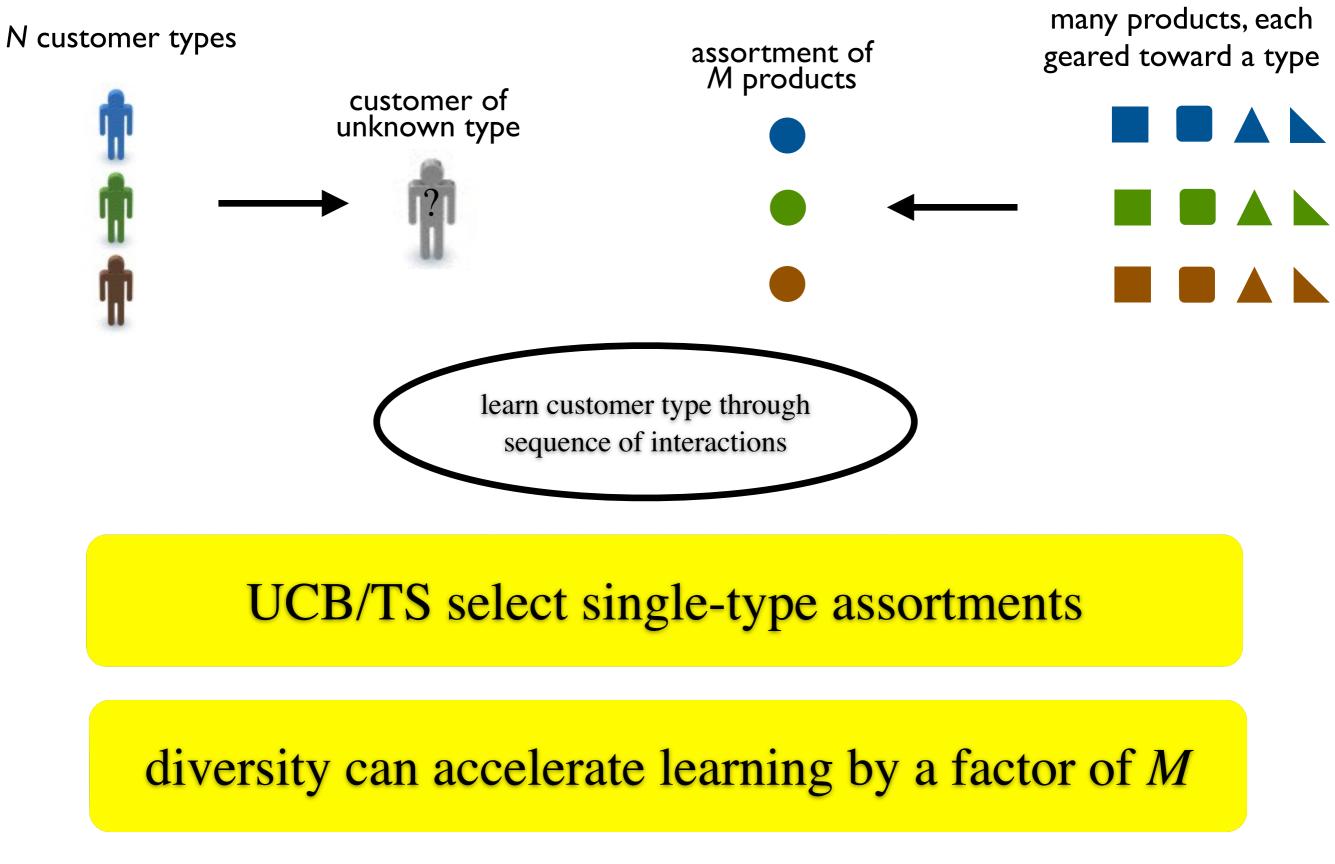






UCB/TS select single-type assortments

Troubling Example: Assortment Optimization



Learning to Optimize

$$\min_{a_t} \frac{(\mathbb{E}_t[r^* - r_t])^2}{I_t(a^*, y_t)} = \min_{a_t} \frac{\text{squared expected regret}}{\text{mutual information}}$$

$$\min_{a_t} \frac{(\mathbb{E}_t[r^* - r_t])^2}{I_t(a^*, y_t)} = \min_{a_t} \frac{\text{squared expected regret}}{\text{mutual information}}$$

- Kills UCB/TS in aforementioned troubling examples
- Slight improvement in cases where UCB/TS work well
- Strong regret bounds

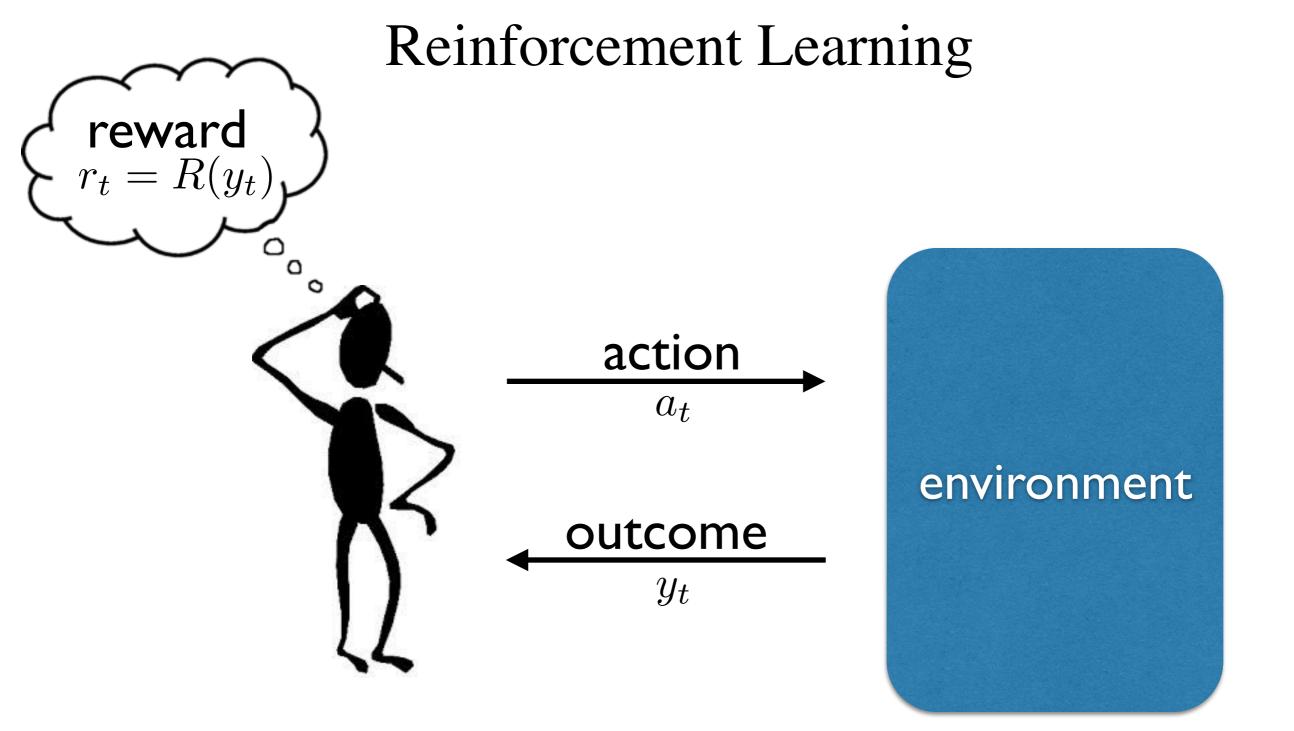
$$\min_{a_t} \frac{(\mathbb{E}_t[r^* - r_t])^2}{I_t(a^*, y_t)} = \min_{a_t} \frac{\text{squared expected regret}}{\text{mutual information}}$$

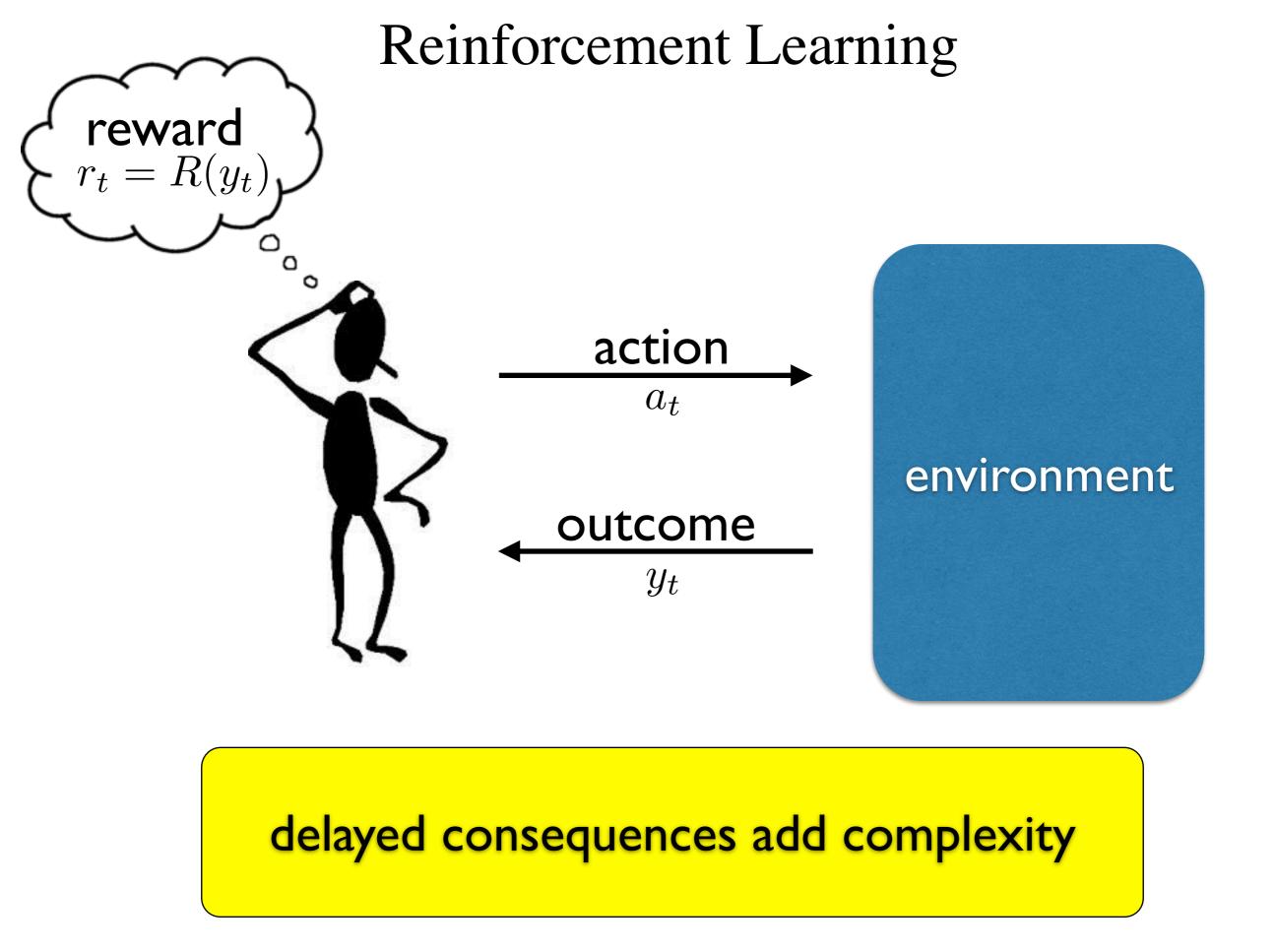
- Kills UCB/TS in aforementioned troubling examples
- Slight improvement in cases where UCB/TS work well
- Strong regret bounds
- "Tractable" but more practical algorithmic work needed
- Is this the "right" information measure?

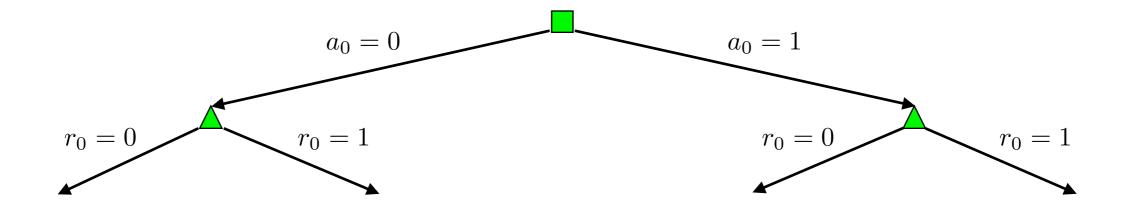
$$\min_{a_t} \frac{(\mathbb{E}_t[r^* - r_t])^2}{I_t(a^*, y_t)} = \min_{a_t} \frac{\text{squared expected regret}}{\text{mutual information}}$$

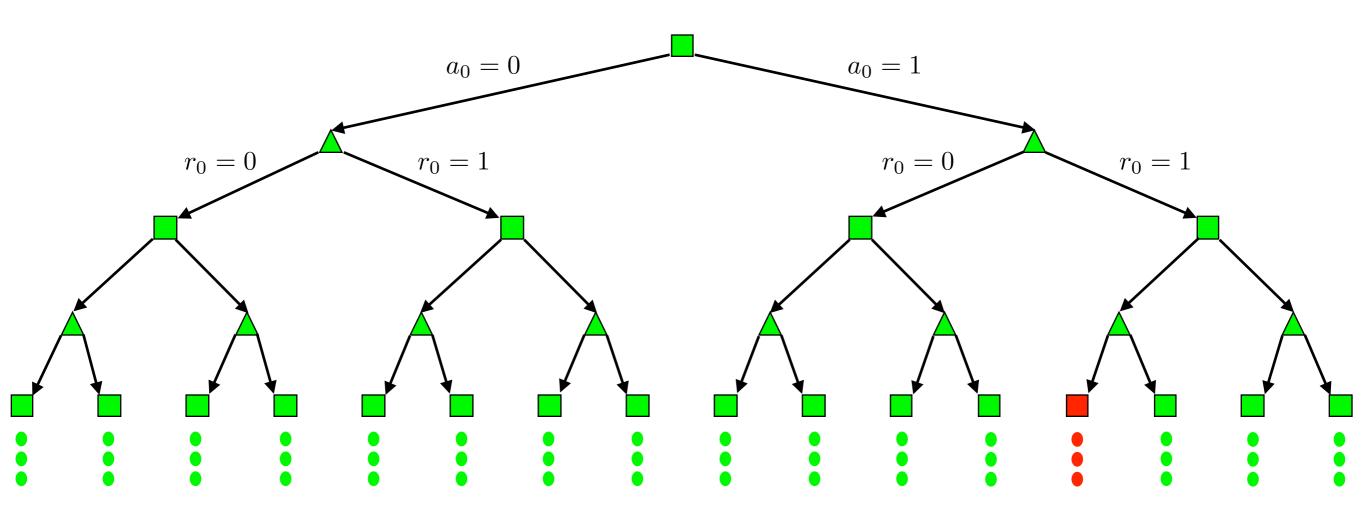
- Kills UCB/TS in aforementioned troubling examples
- Slight improvement in cases where UCB/TS work well
- Strong regret bounds
- "Tractable" but more practical algorithmic work needed
- Is this the "right" information measure?
- Russo-VR (2014): Learning to Optimize via IDS

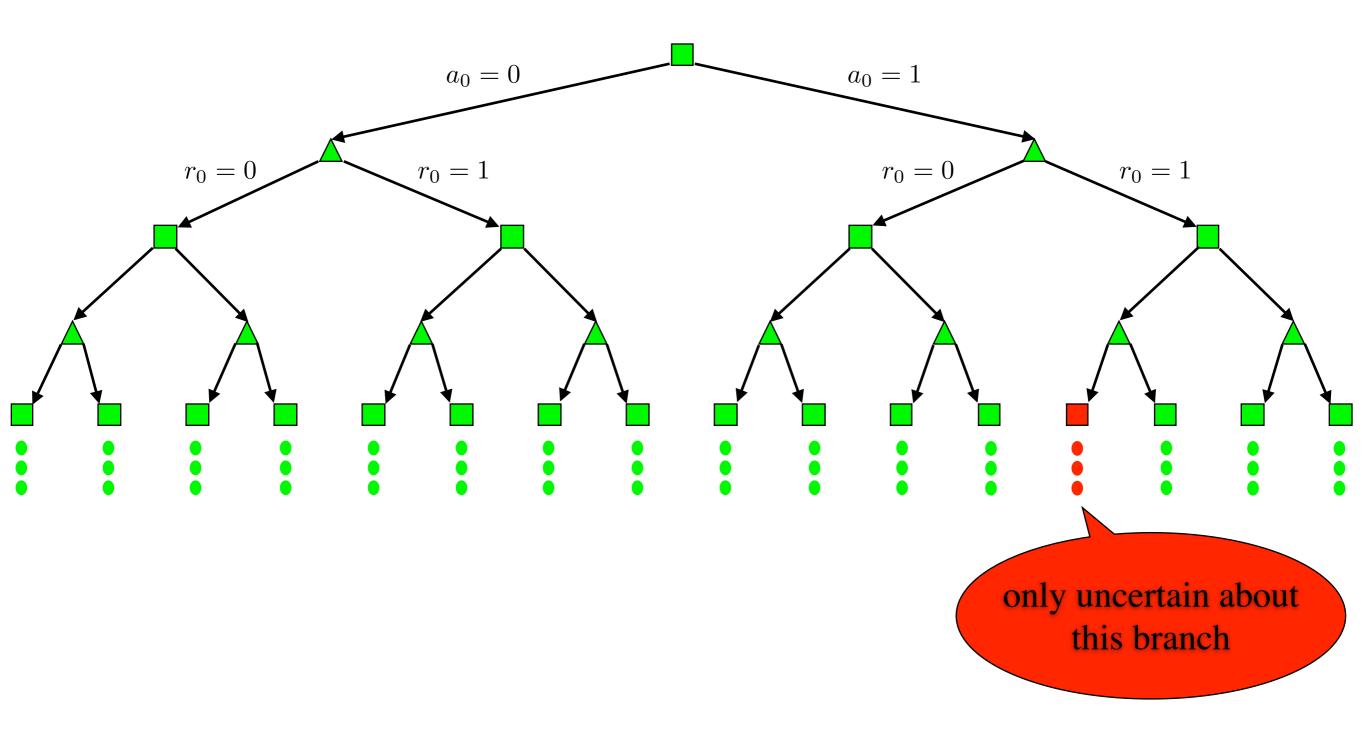
Learning to Optimize

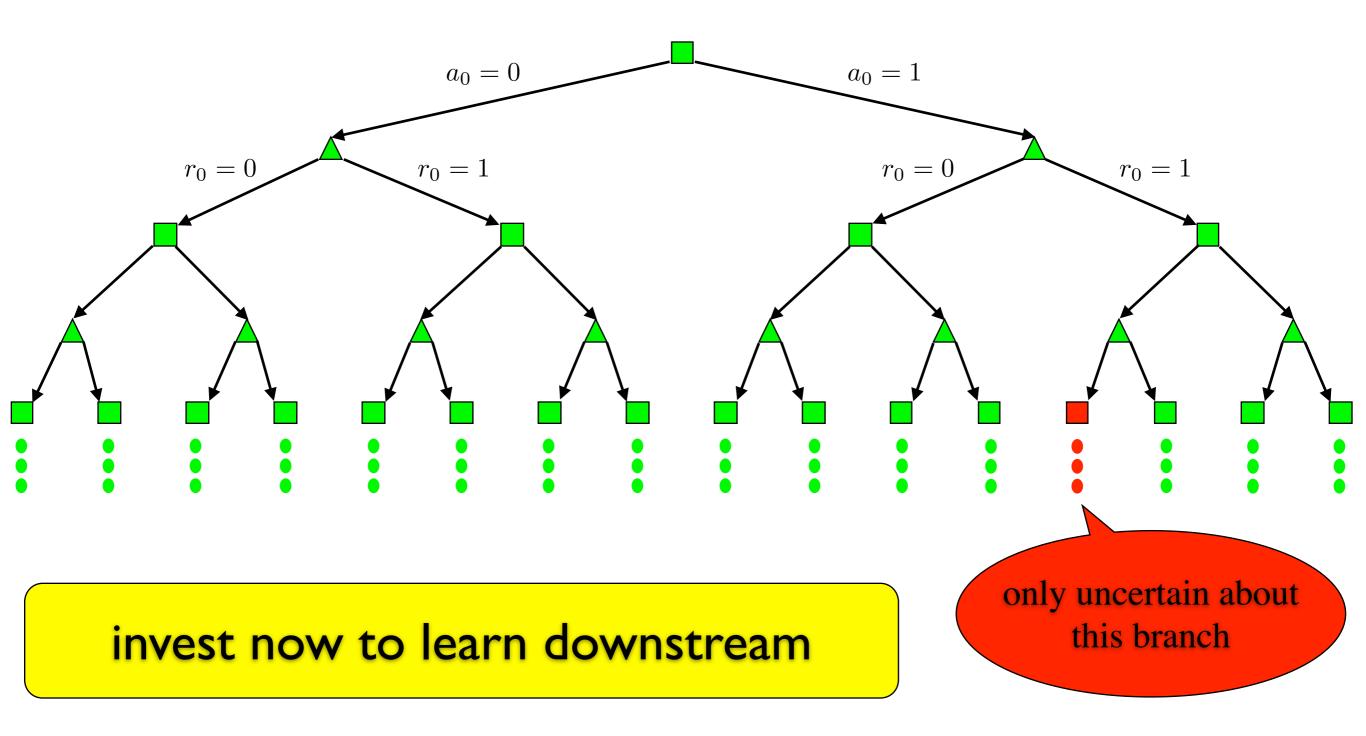


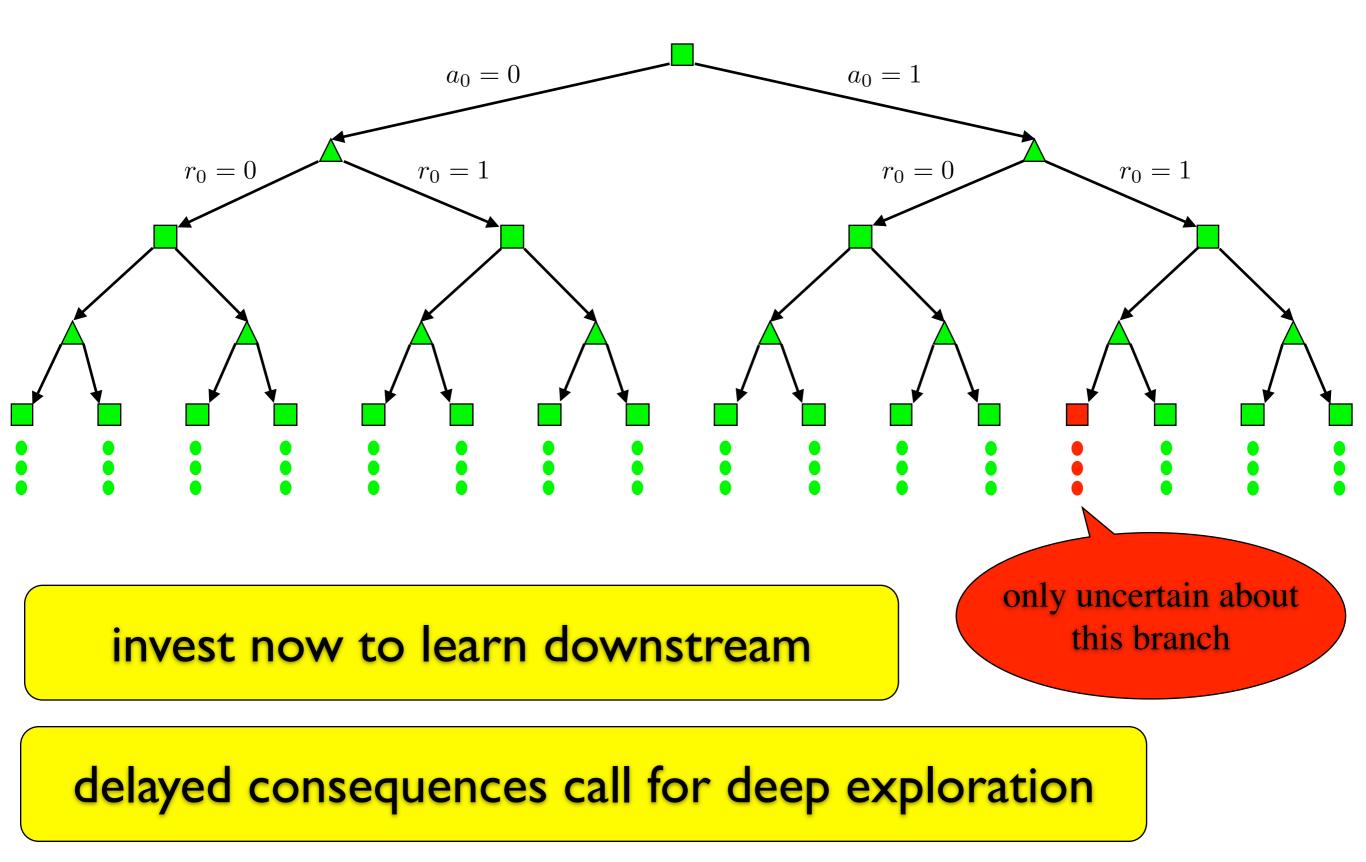












RLDM 2015

• Deep exploration enables polynomial time RL [Kearns-Singh, 2002]

- Deep exploration enables polynomial time RL [Kearns-Singh, 2002]
- Improving understanding, algorithms, regret bounds [Brafman-Tennenholtz, 2002; Kakade, 2003; Strehl et al, 2006; Szita-Szepesvari, 2008; Jaksch et al, 2010; Li-Littman, 2010; Osband et al, 2014]

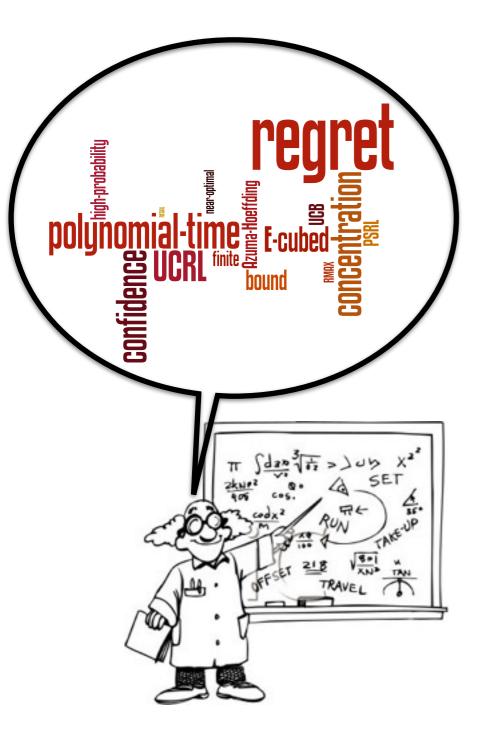
- Deep exploration enables polynomial time RL [Kearns-Singh, 2002]
- Improving understanding, algorithms, regret bounds [Brafman-Tennenholtz, 2002; Kakade, 2003; Strehl et al, 2006; Szita-Szepesvari, 2008; Jaksch et al, 2010; Li-Littman, 2010; Osband et al, 2014]
- Focus has been on case of *tabula rasa* MDPs

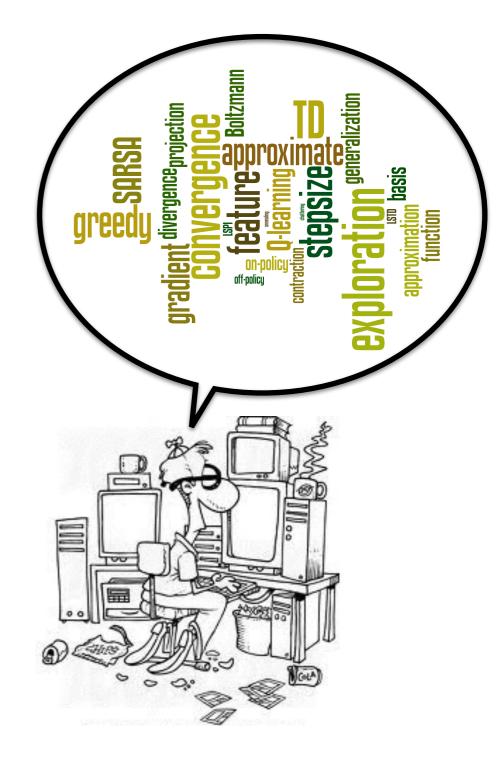
- Deep exploration enables polynomial time RL [Kearns-Singh, 2002]
- Improving understanding, algorithms, regret bounds [Brafman-Tennenholtz, 2002; Kakade, 2003; Strehl et al, 2006; Szita-Szepesvari, 2008; Jaksch et al, 2010; Li-Littman, 2010; Osband et al, 2014]
- Focus has been on case of *tabula rasa* MDPs
- Some find this line of work practically useless

- Deep exploration enables polynomial time RL [Kearns-Singh, 2002]
- Improving understanding, algorithms, regret bounds [Brafman-Tennenholtz, 2002; Kakade, 2003; Strehl et al, 2006; Szita-Szepesvari, 2008; Jaksch et al, 2010; Li-Littman, 2010; Osband et al, 2014]
- Focus has been on case of *tabula rasa* MDPs
- Some find this line of work practically useless
 - Realistic problems require generalization
 - Sometimes they also require deep exploration

Two Cultures?

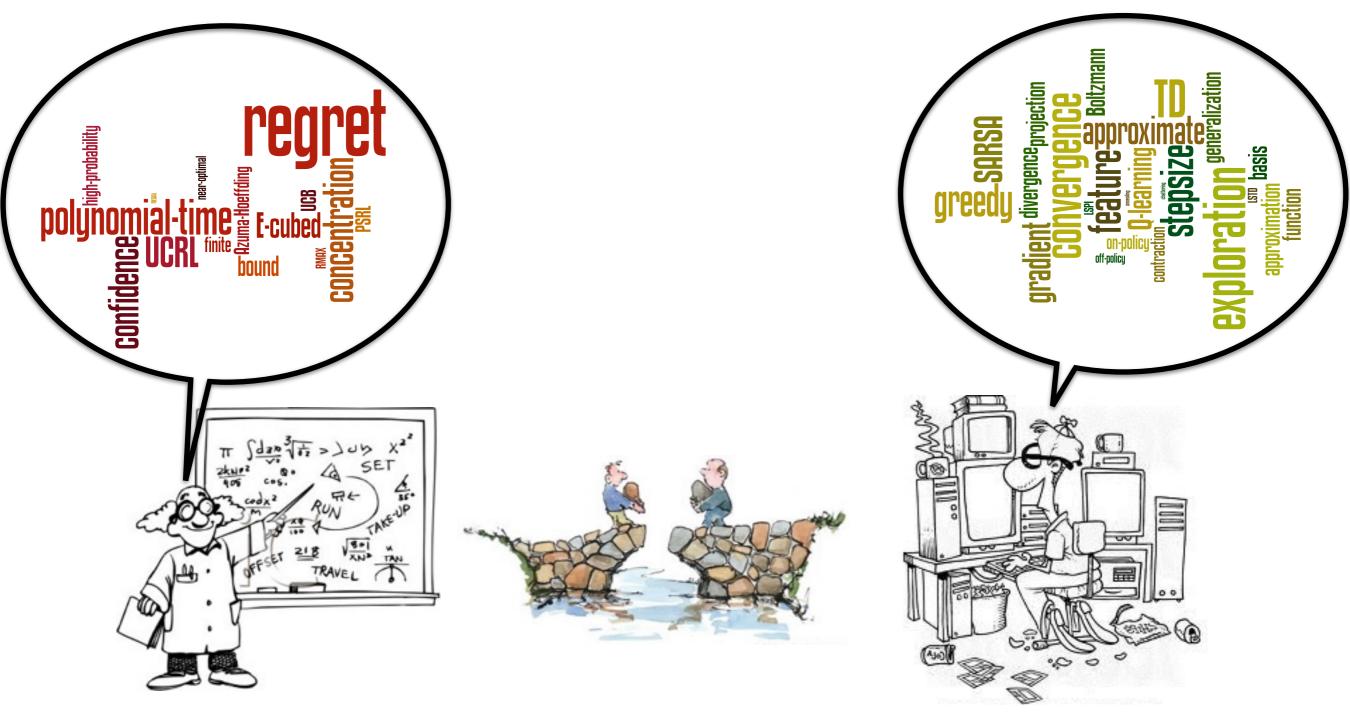
Two Cultures?





Learning to Optimize

Two Cultures?



agenda: design practical RL algorithms that combine deep exploration and generalization

Learning to Optimize

[Dearden et al, 1998] RLDM 2015

- Model-based approaches [Kearns-Koller, 1999; Abbasi-Yadkori, 2011; Ibrahimi et al, 2012; Osband-VR, 2014]
 - Specialized and computationally intractable

- Model-based approaches [Kearns-Koller, 1999; Abbasi-Yadkori, 2011; Ibrahimi et al, 2012; Osband-VR, 2014]
 - Specialized and computationally intractable
- Deep exploration + interpolative value function generalization [Pazis-Parr, 2013]
 - Extrapolation is important in high-dimensional spaces

- Model-based approaches [Kearns-Koller, 1999; Abbasi-Yadkori, 2011; Ibrahimi et al, 2012; Osband-VR, 2014]
 - Specialized and computationally intractable
- Deep exploration + interpolative value function generalization [Pazis-Parr, 2013]
 - Extrapolation is important in high-dimensional spaces
- Deep exploration + value function generalization for deterministic systems [Wen-VR, 2013]
 - Brittle and does not accommodate stochasticity

[Dearden et al, 1998]

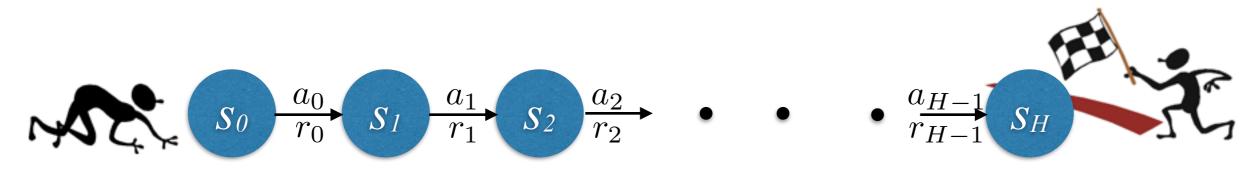
RLDM 2015

- Model-based approaches [Kearns-Koller, 1999; Abbasi-Yadkori, 2011; Ibrahimi et al, 2012; Osband-VR, 2014]
 - Specialized and computationally intractable
- Deep exploration + interpolative value function generalization [Pazis-Parr, 2013]
 - Extrapolation is important in high-dimensional spaces
- Deep exploration + value function generalization for deterministic systems [Wen-VR, 2013]
 - Brittle and does not accommodate stochasticity

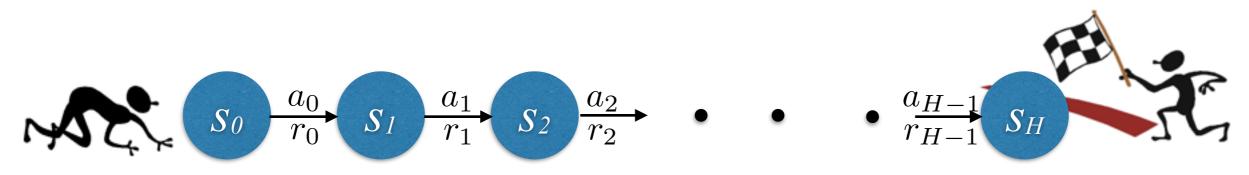
new approach: value function randomization

[Dearden et al, 1998]

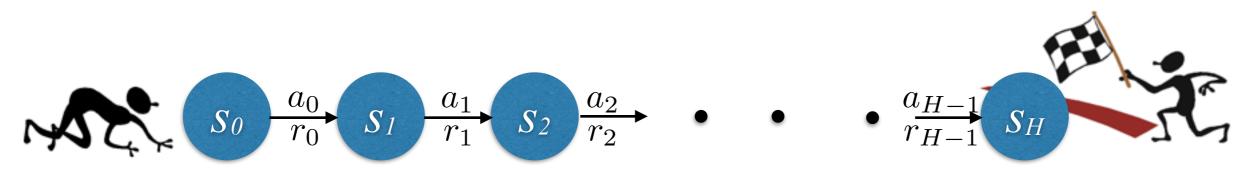
RLDM 2015



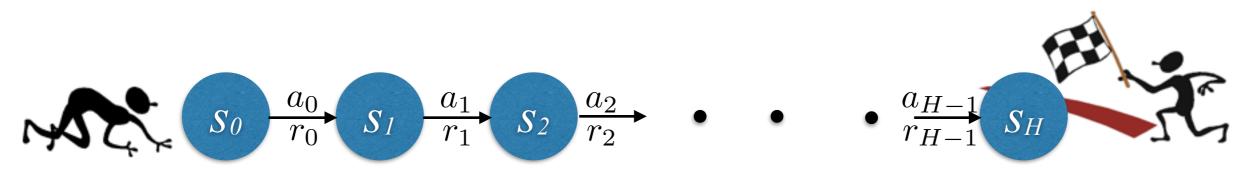
• Episodic learning in a finite-horizon MDP



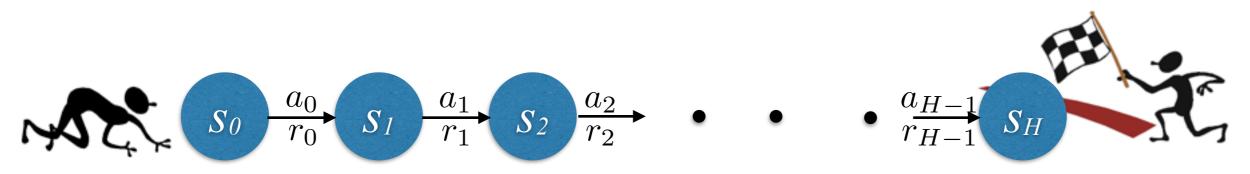
• Reinforcement learning algorithm



- Reinforcement learning algorithm
 - Given observations made through episode $\ell 1$

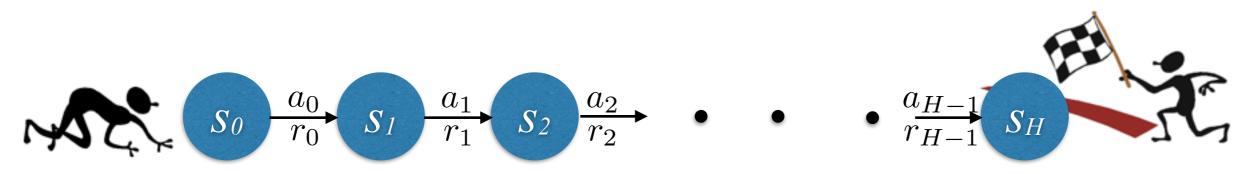


- Reinforcement learning algorithm
 - Given observations made through episode $\ell 1$
 - Select policy $\pi^{\ell} = (\pi_0^{\ell}, \dots, \pi_{H-1}^{\ell})$



- Reinforcement learning algorithm
 - Given observations made through episode $\ell 1$
 - Select policy $\pi^{\ell} = (\pi_0^{\ell}, \dots, \pi_{H-1}^{\ell})$
 - Apply actions $a_h^\ell = \pi_h^\ell(s_h^\ell)$

• Episodic learning in a finite-horizon MDP



- Reinforcement learning algorithm
 - Given observations made through episode $\ell 1$
 - Select policy $\pi^{\ell} = (\pi_0^{\ell}, \dots, \pi_{H-1}^{\ell})$
 - Apply actions $a_h^\ell = \pi_h^\ell(s_h^\ell)$
- Regret Regret $(T) = \sum_{\ell=1}^{T/H} \left(V_0^*(s_0) - V_0^{\pi^{\ell}}(s_0) \right)$

Learning to Optimize

RLDM 2015

Value Function Randomization

Value Function Randomization

• Generalize via value functions parameterized by θ

- Generalize via value functions parameterized by θ
- To select π^{ℓ}
 - Sample statistically plausible parameters θ
 - Use greedy policy

- Generalize via value functions parameterized by θ
- To select π^{ℓ}
 - Sample statistically plausible parameters θ
 - Use greedy policy
- How does this accomplish deep exploration?

- Generalize via value functions parameterized by θ
- To select π^{ℓ}
 - Sample statistically plausible parameters θ
 - Use greedy policy
- How does this accomplish deep exploration?
 - All downstream uncertainty is reflected in value variance

- Generalize via value functions parameterized by θ
- To select π^{ℓ}
 - Sample statistically plausible parameters θ
 - Use greedy policy
- How does this accomplish deep exploration?
 - All downstream uncertainty is reflected in value variance
- How to sample?

• Linearly parameterized value function

$$\tilde{Q}_h^{\theta_h}(s,a) = \sum_{k=1}^K \theta_{hk} \phi_{hk}(s,a)$$

• Linearly parameterized value function

"basis functions"

$$\tilde{Q}_{h}^{\theta_{h}}(s,a) = \sum_{k=1}^{K} \theta_{hk} \phi_{hk}(s,a)$$

• Linearly parameterized value function

"basis functions"

$$\tilde{Q}_{h}^{\theta_{h}}(s,a) = \sum_{k=1}^{K} \theta_{hk} \phi_{hk}(s,a)$$

T 7

- Least-squares value iteration
 - Typically coupled with Boltzmann or ε -greedy exploration

• Linearly parameterized value function

" ("basis functions"

$$\tilde{Q}_{h}^{\theta_{h}}(s,a) = \sum_{k=1}^{K} \theta_{hk} \phi_{hk}(s,a)$$

 \mathbf{I}

• Least-squares value iteration

- Typically coupled with Boltzmann or ε -greedy exploration
- Randomized least-squares value iteration
 - Adds Gaussian noise to regression coefficients
 - Noise drawn based on error covariance matrices
 - Applies greedy policy

• Least-squares value iteration

$$\min_{\hat{\theta}_h} \left(\frac{1}{\sigma^2} \sum_{\ell=1}^L \left(\tilde{Q}_h^{\hat{\theta}_h}(s_h^\ell, a_h^\ell) - \left(r_h^\ell + \max_\alpha \tilde{Q}_{h+1}^{\hat{\theta}_{h+1}}(s_{h+1}^\ell, \alpha) \right) \right)^2 + \lambda \| \hat{\theta}_h \|_2^2 \right)$$

• Least-squares value iteration

$$\hat{\theta}_h \leftarrow \frac{1}{\sigma^2} \left(\frac{1}{\sigma^2} A^\top A + \lambda I \right)^{-1} A^\top b$$
$$\Sigma_h \leftarrow \left(\frac{1}{\sigma^2} A^\top A + \lambda I \right)^{-1}$$

• Least-squares value iteration

$$\hat{\theta}_h \leftarrow \frac{1}{\sigma^2} \left(\frac{1}{\sigma^2} A^\top A + \lambda I \right)^{-1} A^\top b$$
$$\Sigma_h \leftarrow \left(\frac{1}{\sigma^2} A^\top A + \lambda I \right)^{-1}$$

Randomized least-squares value iteration

$$\overline{\theta}_h \leftarrow \frac{1}{\sigma^2} \left(\frac{1}{\sigma^2} A^\top A + \lambda I \right)^{-1} A^\top b$$

 $\hat{\theta}_h \sim \mathcal{N}(\overline{\theta}_h, \Sigma_h)$

- Preliminary analysis of *tabula rasa* case [Osband et al, 2015]
 - Assumes particular prior over episodic MDPs

- Preliminary analysis of *tabula rasa* case [Osband et al, 2015]
 - Assumes particular prior over episodic MDPs
- Regret bound

$$\mathbb{E}\left[\operatorname{Regret}(T)\right] = \tilde{O}\left(\sqrt{SATH}\right)$$

- Preliminary analysis of *tabula rasa* case [Osband et al, 2015]
 - Assumes particular prior over episodic MDPs
- Regret bound

$$\mathbb{E}\left[\operatorname{Regret}(T)\right] = \tilde{O}\left(\sqrt{SATH}\right)$$

• Compare against

$$\mathbb{E}\left[\operatorname{Regret}(T)\right] = \tilde{O}\left(S\sqrt{ATH}\right)$$

- Preliminary analysis of *tabula rasa* case [Osband et al, 2015]
 - Assumes particular prior over episodic MDPs
- Regret bound

$$\mathbb{E}\left[\operatorname{Regret}(T)\right] = \tilde{O}\left(\sqrt{SATH}\right)$$

• Compare against

$$\mathbb{E}\left[\operatorname{Regret}(T)\right] = \tilde{O}\left(S\sqrt{ATH}\right)$$

• Bound implies deep exploration

- Preliminary analysis of *tabula rasa* case [Osband et al, 2015]
 - Assumes particular prior over episodic MDPs
- Regret bound

$$\mathbb{E}\left[\operatorname{Regret}(T)\right] = \tilde{O}\left(\sqrt{SATH}\right)$$

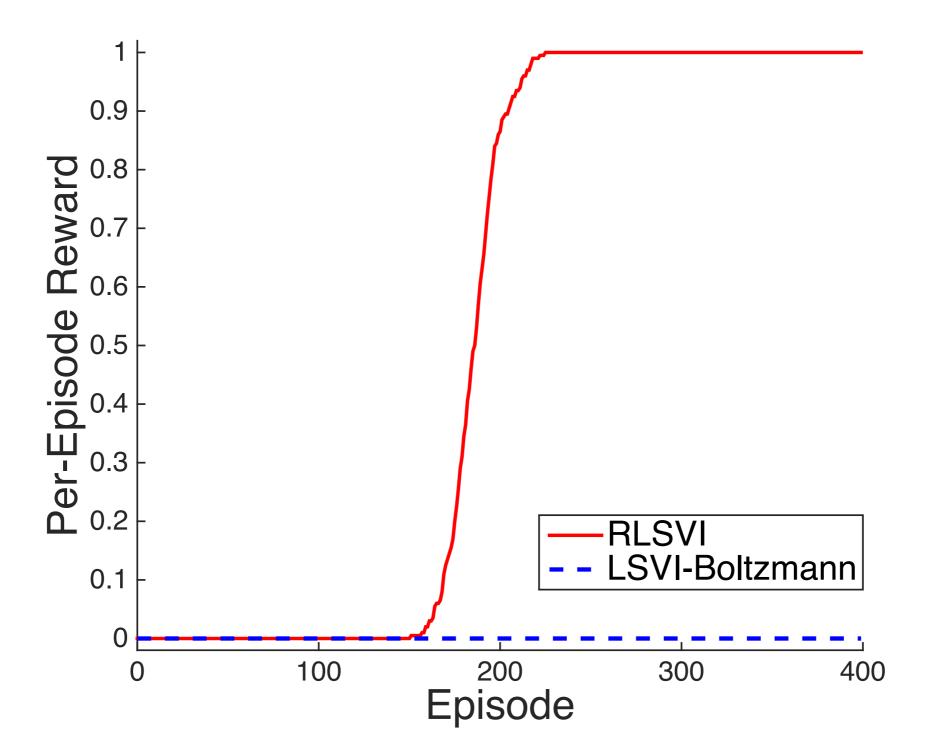
• Compare against

$$\mathbb{E}\left[\operatorname{Regret}(T)\right] = \tilde{O}\left(S\sqrt{ATH}\right)$$

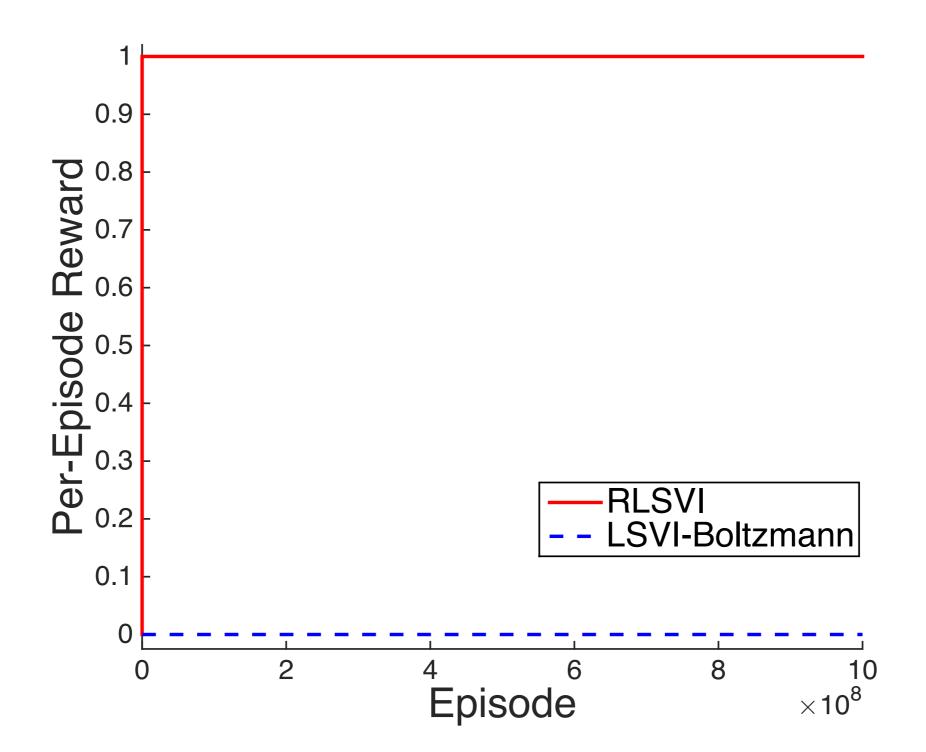
- Bound implies deep exploration
- Regret analysis with generalization remains open

LSVI-Boltzmann vs. RLSVI

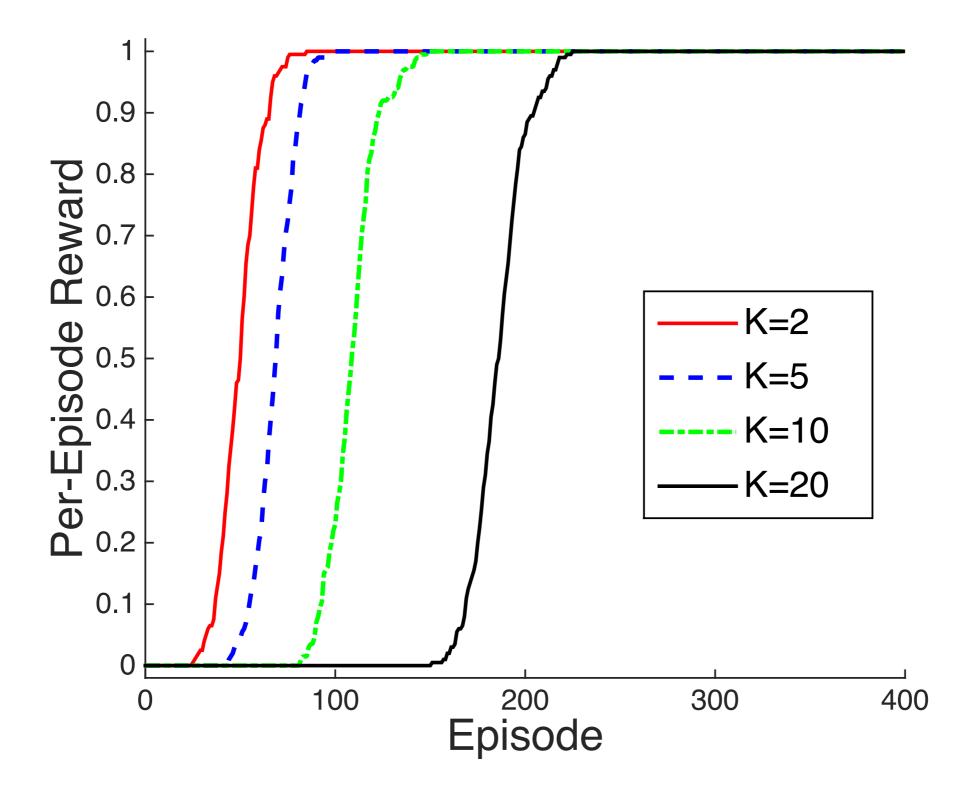
LSVI-Boltzmann vs. RLSVI



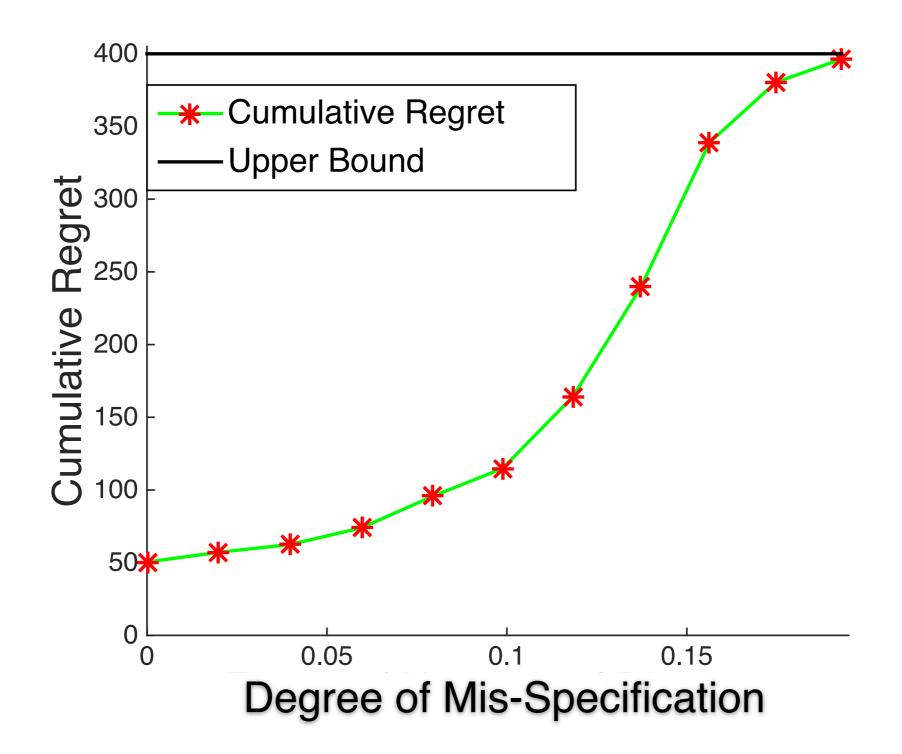
LSVI-Boltzmann vs. RLSVI



Varying the Number of Basis Functions



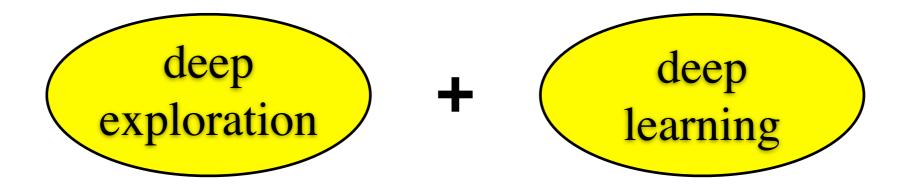
Agnostic Learning



Can we apply value function randomization with nonlinear parameterizations?

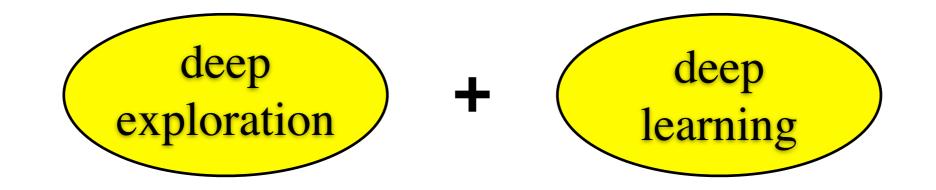
RLDM 2015

Can we apply value function randomization with nonlinear parameterizations?



RLDM 2015

Can we apply value function randomization with nonlinear parameterizations?



Can we apply value function randomization with nonlinear parameterizations?

