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UCB is Often Computationally Intractable
• Consider online linear programming

• Thompson sampling

• UCB

• Computationally tractable version of UCB
• Regret scaled by a factor of d   [Dani-Hayes-Kakade, 2008]
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• TS outperforms UCB designed for tractability

• Russo-VR (2013): Posterior Sampling / Eluder Dimension
• UCB/TS: TS ≅ randomized approximation of UCB
• UCB results → TS results
• problem-specific UCB results
• bandit feedback, general reward models (dependencies among actions)
• contextual, cautious, adversarial, etc.

• Russo-VR (2014): IT Analysis of Thompson Sampling
• simple analysis based on information theory
• handles general feedback information structures
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Troubling Example: Sparse Linear Bandit

• A 1-sparse case

• UCB/TS require         samples to identify
• Rule out one action per period

• Easy to design algorithms for which              suffice
• Binary search
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9
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M products

learn customer type through
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Information-Directed Sampling (IDS)

• Kills UCB/TS in aforementioned troubling examples
• Slight improvement in cases where UCB/TS work well
• Strong regret bounds

• “Tractable” but more practical algorithmic work needed
• Is this the “right” information measure?

• Russo-VR (2014): Learning to Optimize via IDS
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Deep Exploration

12

a0 = 0 a0 = 1

r0 = 0 r0 = 0r0 = 1 r0 = 1

only uncertain about 
this branchinvest now to learn downstream

delayed consequences call for deep exploration
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• Deep exploration enables polynomial time RL         
[Kearns-Singh, 2002]

• Improving understanding, algorithms, regret bounds  
[Brafman-Tennenholtz, 2002; Kakade, 2003; Strehl et al, 2006; Szita-Szepesvari, 2008; 
Jaksch et al, 2010; Li-Littman, 2010; Osband et al, 2014]

• Focus has been on case of tabula rasa MDPs

• Some find this line of work practically useless
• Realistic problems require generalization
• Sometimes they also require deep exploration
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agenda: design practical RL algorithms that combine
deep exploration and generalization
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Toward Deep Exploration + Generalization
• Model-based approaches [Kearns-Koller, 1999; Abbasi-Yadkori, 2011; 

Ibrahimi et al, 2012; Osband-VR, 2014]

• Specialized and computationally intractable

• Deep exploration + interpolative value function 
generalization [Pazis-Parr, 2013]

• Extrapolation is important in high-dimensional spaces

• Deep exploration + value function generalization for 
deterministic systems [Wen-VR, 2013]

• Brittle and does not accommodate stochasticity

15

new approach: value function randomization
[Dearden et al, 1998]
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Episodic RL Framework

• Episodic learning in a finite-horizon MDP

• Reinforcement learning algorithm
• Given observations made through episode
• Select policy
• Apply actions

• Regret 
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Value Function Randomization

• Generalize via value functions parameterized by 

• To select
• Sample statistically plausible parameters
• Use greedy policy

• How does this accomplish deep exploration?
• All downstream uncertainty is reflected in value variance

• How to sample?
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Randomized Least-Squares Value Iteration (RLSVI)

• Linearly parameterized value function

• Least-squares value iteration
• Typically coupled with Boltzmann or ε-greedy exploration

• Randomized least-squares value iteration
• Adds Gaussian noise to regression coefficients
• Noise drawn based on error covariance matrices
• Applies greedy policy
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RLSVI

• Least-squares value iteration

• Randomized least-squares value iteration
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Regret Analysis

• Preliminary analysis of tabula rasa case [Osband et al, 2015]

• Assumes particular prior over episodic MDPs

• Regret bound

• Compare against

• Bound implies deep exploration
• Regret analysis with generalization remains open
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Agnostic Learning
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