
RLDM 2015

Proximal Reinforcement
Learning: Learning to Act
in Primal-Dual Spaces

Sridhar Mahadevan
Autonomous Learning Lab

College of Information
 and Computer Sciences

IBM Watson Research

Thanks to my collaborators

Bo Liu

Ian Gemp

Philip Thomas

Stephen Giguere

Nicholas Jacek

Will Dabney

Mohammad Ghavamzadeh

Ji Liu

Marek Petrik

UMass

Adobe

Univ. of
Rochester

IBM

Proximal RL Framework
(Mahadevan et al., Arxiv 2014)

Why Proximal RL?

ScalabilitySparsity

Safety Reliability

Three Level Analysis

Computational
Theory

Algorithmic Level

Neural
Implementation

with probability at least 1� �, we have

||V � v̄
n

||
⇠

1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

(33)

+

s
2⌧

C

⌧⇠
max

�
min

(A>M�1A)

Err(

¯✓
n

, ȳ
n

),

where ⌧
C

= �
max

(C).

Proof. See the supplementary material.

5 ACCELERATED ALGORITHM

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt), ✓mt = ✓t + ↵t
ˆA>
t yt,

yt+1

= yt + ↵t(
ˆbt � ˆAt✓

m
t � ˆMty

m
t), ✓t+1

= ✓t + ↵t
ˆA>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 FURTHER ANALYSIS

6.1 ACCELERATION ANALYSIS

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2

||A✓� b||2
M

�1

, and the
corresponding error bound of 1

2

||A✓� b||2
⇠

and kV � v̄
n

||
⇠

can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||

2

+ �p
n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1

= yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1

= ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2

+

||A||
2

n
+

�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||

2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 LEARNING WITH BIASED ⇢
t

The importance weight factor ⇢
t

is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢

t

may not be
estimated exactly, i.e., the estimation ⇢̂

t

is a biased esti-
mation of the true ⇢

t

. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

😰

min

✓
max

y
(L(✓, y) = hb�A✓, yi � 1

2

kyk2M

The Key Idea of Proximal RL

Primal Space
state,action,reward

Dual Space
operator splitting
gradient updates
Saddle point form

✓ ! r (✓)

�! r ⇤(�)

Recent publications
✓ UAI 2015: Finite sample analysis of proximal gradient

TD algorithms

❖ ICML 2014: Generalization of natural gradient ascent

❖ NIPS 2013: Safe RL with Projected Natural Actor Critic

❖ AAAI 2013: Basis adaptation for sparse nonlinear RL

❖ NIPS 2012: Regularized off-policy TD-learning

❖ UAI 2012: Sparse Q-learning with mirror descent

Developing a True Stochastic Gradient TD Algorithm:
The End of a 30 year Quest?

Bo Liu, Mohammad Ghavamzadeh,
Ji Liu, Marek Petrik, Sridhar Mahadevan

UAI 2015

Stability of RL Algorithms
RL

problem

Tabular
TD(λ)

Prediction

On-Policy Off-Policy

Stable

Linear
TD(λ)

Nonlinear
TD(λ)

Stable Non-
stable

Tabular
TD(λ)

Linear
TD(λ)

Nonlinear
TD(λ)

Non-
stable

Non-
stable

Tabular
Sarsa(λ)

Control

On-Policy Off-Policy

Stable

Linear
Sarsa(λ)

Nonlinear
Sarsa(λ)

Stable
(chatter)

Non-
stable

Tabular
Q-learning

Linear
Q-learning

Nonlinear
Q-learning

Non-
stable

Non-
stableStable Stable

ApproximationExact ApproximationExact ApproximationExact ApproximationExact

Figure 1.1: Status of conventional TD methods with tabular representation and function approxima-
tion, in terms of stability. For stability analysis of linear Sarsa (⌦) as well as its chattering behavior
see Gordon (2000).

TD Prediction
+

Function approximation (FA)

The new algorithms

TD(λ)
GTD, GTD2, TDC

GTD(λ)
GQ(λ)

Conventional algorithm

Sounds only with

linear FA
+

on-policy learning

Converge under general settings:

both linear and nonlinear FA
+

both on-policy and off-policy learning

Off-policy TD Control
+

Linear Function approximation

Q-learning Greey-GQ

Can diverge Has stability guarantee

The new algorithmConventional algorithm

+ hybrid linearTD version

Figure 1.2: Algorithmic contributions.

6

(Maei, 2011)

Instability of TD-Learning

TD diverges

Baird
1995

Take the Blue Pill or the Red?

J(✓) = kb�A✓k2M�1

Baird,
Sutton et al.

Our
approach

min

✓
max

y
(L(✓, y) = hb�A✓, yi � 1

2

kyk2M

NEU
MSPBE
MSBE

Operator Splitting

F(G(x))

F'()xG'() F'()+G'()

Where does
TD fit in

here?

Safe Reinforcement Learning with
 Projected Natural Actor Critic

Philip Thomas, Will Dabney, Sridhar Mahadevan, Steve Giguere

NIPS 2013

!t+1 = !t + ↵t�t�tActor update:

Critic update: ✓t+1 = ✓t + �t�tG
�1
t+1 (st, at)

Natural Actor Critic

How to ensure
safety in

actor critic learning?

Conjugate Functions

f(x)

x

�x

�f⇤(�)

f

⇤(�) = sup
x

(hx,�i � f(x))

Mirror Maps
(Nemirovski and Yudin, 1980s)

r�

r�⇤

xt
xt+1 X

r�(xt)

r�(yt+1)

gradient step

D

DUAL
SPACE

PRIMAL
SPACE

Rn

Legendre Transform

Mirror Descent = Natural Gradient!

4 Mirror Descent

Mirror descent algorithms form a class of highly scalable online gradient methods that are useful in
constrained minimization of non-smooth functions [17, 18]. It has recently been applied to value
function approximation and basis adaptation for reinforcement learning [19, 20]. The mirror descent
update is

x

k+1 = r ⇤
k

�
r

k

(x

k

)� ↵

k

rf(x

k

)

�
, (1)

where
k

: Rn ! R is a continuously differentiable and strongly convex function called the proxi-
mal function, and where the conjugate of

k

is ⇤
k

(y) , max

x2Rn {x|
y �

k

(x)}, for any y 2 Rn.
Different choices of

k

result in different mirror descent algorithms. A common choice for a fixed

k

= , 8k, is the p-norm [20], and a common adaptive
k

is the Mahalanobis norm with a dynamic
covariance matrix [15].

Intuitively, the distance metric for the space that x
k

resides in is not necessarily the same as that of
the space that rf(x

k

) resides in. This suggests that it may not be appropriate to directly add x

k

and �↵
k

rf(x

k

) in the gradient descent update. To correct this, mirror descent moves x
k

into the
space of gradients (the dual space) with r

k

(x

k

) before performing the gradient update. It takes
the result of this step in gradient space and returns it to the space of x

k

(the primal space) with r ⇤
k

.
Different choices of

k

amount to different assumptions about the relationship between the primal
and dual spaces at x

k

.

5 Equivalence of Natural Gradient Descent and Mirror Descent

Theorem 5.1. The natural gradient descent update at step k with metric tensor G
k

, G(x

k

):

x

k+1 = x

k

� ↵

k

G

�1
k

rf(x

k

), (2)
is equivalent to (1), the mirror descent update at step k, with

k

(x) = (

1
/2)x|

G

k

x.

Proof. First, notice that r
k

(x) = G

k

x. Next, we derive a closed-form for ⇤
k

:

⇤
k

(y) = max

x2Rn

⇢
x

|
y � 1

2

x

|
G

k

x

�
. (3)

Since the function being maximized on the right hand side is strictly concave, the x that maximizes
it is its critical point. Solving for this critical point, we get x = G

�1
k

y. Substituting this into (3), we
find that ⇤

k

(y) = (

1
/2)y|G�1

k

y. Hence, r ⇤
k

(y) = G

�1
k

y. Inserting the definitions of r
k

(x) and
r ⇤

k

(y) into (1), we find that the mirror descent update is

x

k+1 =G

�1
k

(G

k

x

k

� ↵

k

rf(x

k

)) = x

k

� ↵

k

G

�1
k

rf(x

k

),

which is identical to (2). ⌅
Although researchers often use

k

that are norms like the p-norm and Mahalanobis norm, notice
that the

k

that results in natural gradient descent is not a norm. Also, since G
k

depends on k,
k

is
an adaptive proximal function [15].

6 Projected Natural Gradients

When x is constrained to some set, X ,
k

in mirror descent is augmented with the indicator function
I

X

, where I

X

(x) = 0 if x 2 X , and +1 otherwise. The
k

that was shown to generate an
update equivalent to the natural gradient descent update, with the added constraint that x 2 X , is

k

(x) = (

1
/2)x|

G

k

x+ I

X

(x). Hereafter, any references to
k

refer to this augmented version.

For this proximal function, the subdifferential of
k

(x) is r
k

(x) = G

k

(x) +

ˆ

N

X

(x) = (G

k

+

ˆ

N

X

)(x), where ˆ

N

X

(x) , @I

X

(x), in the middle term G

k

and ˆ

N

X

are relations, and + in the middle
term denotes Minkowski addition.1 ˆ

N

X

(x) is the normal cone of X at x if x 2 X and ; otherwise
1Later, we abuse notation and switch freely between treating Gk as a matrix and a relation. When it is a

matrix, Gkx denotes matrix-vector multiplication that produces a vector. When it is a relation, Gk(x) produces
the singleton {Gkx}.

3

Natural
gradient
(Amari)

Mirror
Descent

(Nemirovski
and Yudin)

4 Mirror Descent

Mirror descent algorithms form a class of highly scalable online gradient methods that are useful in
constrained minimization of non-smooth functions [17, 18]. It has recently been applied to value
function approximation and basis adaptation for reinforcement learning [19, 20]. The mirror descent
update is

x

k+1 = r ⇤
k

�
r

k

(x

k

)� ↵

k

rf(x

k

)

�
, (1)

where
k

: Rn ! R is a continuously differentiable and strongly convex function called the proxi-
mal function, and where the conjugate of

k

is ⇤
k

(y) , max

x2Rn {x|
y �

k

(x)}, for any y 2 Rn.
Different choices of

k

result in different mirror descent algorithms. A common choice for a fixed

k

= , 8k, is the p-norm [20], and a common adaptive
k

is the Mahalanobis norm with a dynamic
covariance matrix [15].

Intuitively, the distance metric for the space that x
k

resides in is not necessarily the same as that of
the space that rf(x

k

) resides in. This suggests that it may not be appropriate to directly add x

k

and �↵
k

rf(x

k

) in the gradient descent update. To correct this, mirror descent moves x
k

into the
space of gradients (the dual space) with r

k

(x

k

) before performing the gradient update. It takes
the result of this step in gradient space and returns it to the space of x

k

(the primal space) with r ⇤
k

.
Different choices of

k

amount to different assumptions about the relationship between the primal
and dual spaces at x

k

.

5 Equivalence of Natural Gradient Descent and Mirror Descent

Theorem 5.1. The natural gradient descent update at step k with metric tensor G
k

, G(x

k

):

x

k+1 = x

k

� ↵

k

G

�1
k

rf(x

k

), (2)
is equivalent to (1), the mirror descent update at step k, with

k

(x) = (

1
/2)x|

G

k

x.

Proof. First, notice that r
k

(x) = G

k

x. Next, we derive a closed-form for ⇤
k

:

⇤
k

(y) = max

x2Rn

⇢
x

|
y � 1

2

x

|
G

k

x

�
. (3)

Since the function being maximized on the right hand side is strictly concave, the x that maximizes
it is its critical point. Solving for this critical point, we get x = G

�1
k

y. Substituting this into (3), we
find that ⇤

k

(y) = (

1
/2)y|G�1

k

y. Hence, r ⇤
k

(y) = G

�1
k

y. Inserting the definitions of r
k

(x) and
r ⇤

k

(y) into (1), we find that the mirror descent update is

x

k+1 =G

�1
k

(G

k

x

k

� ↵

k

rf(x

k

)) = x

k

� ↵

k

G

�1
k

rf(x

k

),

which is identical to (2). ⌅
Although researchers often use

k

that are norms like the p-norm and Mahalanobis norm, notice
that the

k

that results in natural gradient descent is not a norm. Also, since G
k

depends on k,
k

is
an adaptive proximal function [15].

6 Projected Natural Gradients

When x is constrained to some set, X ,
k

in mirror descent is augmented with the indicator function
I

X

, where I

X

(x) = 0 if x 2 X , and +1 otherwise. The
k

that was shown to generate an
update equivalent to the natural gradient descent update, with the added constraint that x 2 X , is

k

(x) = (

1
/2)x|

G

k

x+ I

X

(x). Hereafter, any references to
k

refer to this augmented version.

For this proximal function, the subdifferential of
k

(x) is r
k

(x) = G

k

(x) +

ˆ

N

X

(x) = (G

k

+

ˆ

N

X

)(x), where ˆ

N

X

(x) , @I

X

(x), in the middle term G

k

and ˆ

N

X

are relations, and + in the middle
term denotes Minkowski addition.1 ˆ

N

X

(x) is the normal cone of X at x if x 2 X and ; otherwise
1Later, we abuse notation and switch freely between treating Gk as a matrix and a relation. When it is a

matrix, Gkx denotes matrix-vector multiplication that produces a vector. When it is a relation, Gk(x) produces
the singleton {Gkx}.

3

We show these 30-year old techniques are closely related!

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Proximal Mapping
generalizes projections

• The proximal mapping of a convex function
h is defined as

• Examples:

proxh(x) = argminu

✓
h(u) +

1

2

ku� xk2
2

◆

h(x) = 0,proxh(x) = x

h(x) = IC(x),proxh(x) = PC(x) = argminu2Cku� xk2
2

Gradient Descent as proximal mapping

wt+1 wt � ↵trf(wt)Answer:

Question?

wk+1 = minu(hrf(wk), ui+ 1
2↵ku� wkk2)

Gradient Descent as proximal operator

Answer:

Question?

wk+1 = minu(hrf(wk), ui+ 1
2↵KL(u,wk))

wj
k+1

=
wj

k exp

�↵k@fj(wk)

Pn
i=1 wi

k exp

�↵k@fi(wi)

"Almost" dimension-free

Details of the framework

MSBE

MSPBE

Φθ

Projection

Primal Approach to Gradient TD

Involves products of expectations

This cannot be easily sampled!

The key to our approach is to look at the dual problem, and use
operator splitting (Mahadevan et al., Arxiv, 2014)

Fast gradient-descent methods for temporal-difference learning with linear function approximation

and note that

⇧>D⇧ = (�(�>D�)�1�>D)>D(�(�>D�)�1�>D)
= D>�(�>D�)�1�>D�(�>D�)�1�>D

= D>�(�>D�)�1�>D.

Using these relationships, the projected objective can be
written in terms of expectations as

MSPBE(✓)
= k V✓ �⇧TV✓ k2D
= k ⇧(V✓ � TV✓) k2D
= (⇧(V✓ � TV✓))>D(⇧(V✓ � TV✓))
= (V✓ � TV✓)>⇧>D⇧(V✓ � TV✓)
= (V✓ � TV✓)>D>�(�>D�)�1�>D(V✓ � TV✓)
= (�>D(TV✓ � V✓))>(�>D�)�1�>D(TV✓ � V✓)

= E[��]> E
⇥
��>

⇤�1 E[��] .

From this form, it is clear that MSPBE differs from NEU
(6) only by the inclusion of the inverse of the feature-
covariance matrix. As in prior work (Sutton, Szepesvari &
Maei 2009) we use a second modifiable parameter w 2 <n

to form a quasi-stationary estimate of all but one of the ex-
pectations in the gradient of the objective function, thereby
avoiding the need for two independent samples. Here we
use a conventional linear predictor which causes w to ap-
proximate

w ⇡ E
⇥
��>

⇤�1 E[��] . (7)

Using this, we can write the negative gradient of the
MSPBE objective function as

�1
2
rMSPBE(✓) = E

⇥
(�� ��0)�>

⇤
E

⇥
��>

⇤�1 E[��]

⇡ E
⇥
(�� ��0)�>

⇤
w,

which can be directly sampled. The resultant O(n) algo-
rithm, which we call GTD2, is

✓k+1 = ✓k + ↵k(�k � ��0k)(�>k wk), (8)

where wk is updated by

wk+1 = wk + �k(�k � �>k wk)�k. (9)

The derivation of our second new algorithm starts from the
same expression for the gradient and then takes a slightly
different route:

�1
2
rMSPBE(✓)

= E
⇥
(�� ��0)�>

⇤
E

⇥
��>

⇤�1 E[��]

=
�
E

⇥
��>

⇤
� �E

⇥
�0�>

⇤�
E

⇥
��>

⇤�1 E[��]

= E[��]� �E
⇥
�0�>

⇤
E

⇥
��>

⇤�1 E[��]

⇡ E[��]� �E
⇥
�0�>

⇤
w,

which is then sampled, resulting in the following O(n) al-
gorithm, which we call TD with gradient correction, or
TDC for short:

✓k+1 = ✓k + ↵k�k�k � ↵��0k(�>k wk), (10)

where wk is generated by (9) as in GTD2. Note that the
update to ✓k is the sum of two terms, and that the first term
is exactly the same as the update (2) of conventional linear
TD. The second term is essentially an adjustment or correc-
tion of the TD update so that it follows the gradient of the
MSPBE objective function. If the second parameter vector
is initialized to w0 = 0, and �k is small, then this algorithm
will start out making almost the same updates as conven-
tional linear TD. Note also that after the convergence of ✓k,
wk will converge to zero again.

5. Proof of convergence of GTD2
The purpose of this section is to establish that the GTD2
algorithm converges with probability one to the TD fixpoint
(4) under standard assumptions.
Theorem 1 (Convergence of GTD2). Consider the GTD2
iterations (8) and (9) with step-size sequences ↵k and �k

satisfying �k = ⌘↵k, ⌘ > 0, ↵k, �k 2 (0, 1],
P1

k=0 ↵k =
1,

P1
k=0 ↵2

k < 1. Further assume that (�k, rk, �0k)
is an i.i.d. sequence with uniformly bounded second mo-
ments. Let A = E

⇥
�k(�k � ��0k)>

⇤
, b = E[rk�k], and

C = E
⇥
�k�>k

⇤
. Assume that A and C are non-singular.

Then the parameter vector ✓k converges with probability
one to the TD fixpoint (4).

Proof. The proof is very similar to that given by Sutton,
Szepesvári and Maei (2009) for GTD, and we refer the
reader to that reference for further details. It is shown there
that the TD fixpoint can be written as the condition

�A✓ + b = 0. (11)

First, we rewrite the algorithm’s two iterations as a sin-
gle iteration in a combined parameter vector with 2n com-
ponents, ⇢>k = (d>k , ✓>k), where dk = wk/

p
⌘, and a

new reward-related vector with 2n components, g>k+1 =
(rk�>k , 0>), as follows:

⇢k+1 = ⇢k + ↵k
p

⌘ (Gk+1⇢k + gk+1) ,

where

Gk+1 =
✓

�p⌘�k�>k �k(��0k � �k)>
(�k � ��0k)�>k 0

◆
.

Let G = E[Gk] and g = E[gk]. Note that G and g are well-
defined as by the assumption the process {�k, rk, �0k}k is
i.i.d. In particular,

G =
✓
�p⌘ C �A

A> 0

◆
, g =

✓
b
0

◆
.

Sutton, et al.
2009

Linear System Reformulation of Gradient TD
(Maei, 2011)

with M equals to the identity matrix I for NEU and to
the covariance matrix C for MSPBE. The second equality
in (7) holds because of the following lemma from Section
4.2 in Maei [2011].
Lemma 1. Let D =

��
s
i

, a
i

, r
i

, s0
i

�
n

i=1

, s
i

⇠ ⇠, a
i

⇠
⇡
b

(·|s
i

), s0
i

⇠ P (·|s
i

, a
i

) be a training set generated by
the behavior policy ⇡

b

and T be the Bellman operator of
the target policy ⇡. Then, we have

�

>
⌅(T v̂ � v̂) = E

⇥
⇢
i

�
i

(✓)�
i

⇤
= b�A✓.

Motivated by minimizing the NEU and MSPBE objective
functions using the stochastic gradient methods, the GTD
and GTD2 algorithms were proposed with the following
update rules:

GTD: y
t+1

= y
t

+ ↵
t

�
⇢
t

�
t

(✓
t

)�
t

� y
t

�
, (8)

✓
t+1

= ✓
t

+ ↵
t

⇢
t

��
t

(y>
t

�
t

),

GTD2: y
t+1

= y
t

+ ↵
t

�
⇢
t

�
t

(✓
t

)� �>
t

y
t

�
�
t

, (9)

✓
t+1

= ✓
t

+ ↵
t

⇢
t

��
t

(y>
t

�
t

).

However, it has been shown that the above update rules do
not update the value function parameter ✓ in the gradient di-
rection of NEU and MSPBE, and thus, NEU and MSPBE
are not the true objective functions of the GTD and GTD2
algorithms [Szepesvári, 2010]. Consider the NEU objec-
tive function in (5). Taking its gradient w.r.t. ✓, we obtain

�1

2

rNEU(✓) = �
�
rE

⇥
⇢
i

�
i

(✓)�>
i

⇤�
E
⇥
⇢
i

�
i

(✓)�
i

⇤

= �
�
E
⇥
⇢
i

r�
i

(✓)�>
i

⇤�
E
⇥
⇢
i

�
i

(✓)�
i

⇤

= E
⇥
⇢
i

��
i

�>
i

⇤
E
⇥
⇢
i

�
i

(✓)�
i

⇤
. (10)

If the gradient can be written as a single expectation, then
it is straightforward to use a stochastic gradient method.
However, we have a product of two expectations in (10),
and unfortunately, due to the correlation between them, the
sample product (with a single sample) won’t be an unbiased
estimate of the gradient. To tackle this, the GTD algorithm
uses an auxiliary variable y

t

to estimate E
⇥
⇢
i

�
i

(✓)�
i

⇤
, and

thus, the overall algorithm is no longer a true stochastic
gradient method w.r.t. NEU. It can be easily shown that the
same problem exists for GTD2 w.r.t. the MSPBE objective
function. This prevents us from using the standard con-
vergence analysis techniques of stochastic gradient descent
methods to obtain a finite-sample performance bound for
the GTD and GTD2 algorithms.

It should be also noted that in the original publications of
GTD/GTD2 algorithms [Sutton et al., 2008, 2009], the au-
thors discussed handling the off-policy scenario using both
importance and rejected sampling. In rejected sampling
that was mainly used in Sutton et al. [2008, 2009], a sample
(s

i

, a
i

, r
i

, s0
i

) is rejected and the parameter ✓ does not up-
date for this sample, if ⇡(a

i

|s
i

) = 0. This sampling strat-
egy is not efficient since a lot of samples will be discarded
if ⇡

b

and ⇡ are very different.

2.2 Related Work

Before we present a finite-sample performance bound for
GTD and GTD2, it would be helpful to give a brief
overview of the existing literature on finite-sample anal-
ysis of the TD algorithms. The convergence rate of the
TD algorithms mainly depends on (d, n, ⌫), where d is
the size of the approximation space (the dimension of the
feature vector), n is the number of samples, and ⌫ is the
smallest eigenvalue of the sample-based covariance matrix
ˆC =

ˆ

�

>
ˆ

�, i.e., ⌫ = �
min

(

ˆC).

Antos et al. [2008] proved an error bound of O(

d log d

n

1/4) for
LSTD in bounded spaces. Lazaric et al. [2010b] proposed
a LSTD analysis in leaner spaces and obtained a tighter

bound of O(

q
d log d

n⌫

) and later used it to derive a bound for
the least-squares policy iteration (LSPI) algorithm [Lazaric
et al., 2012]. Tagorti and Scherrer [2014] recently proposed
the first convergence analysis for LSTD(�) and derived a
bound of ˜O(d/⌫

p
n). The analysis is a bit different than

the one in Lazaric et al. [2010b] and the bound is weaker in
terms of d and ⌫. Another recent result is by Prashanth
et al. [2014] that use stochastic approximation to solve
LSTD(0), where the resulting algorithm is exactly TD(0)

with random sampling (samples are drawn i.i.d. and not
from a trajectory), and report a Markov design bound (the
bound is computed only at the states used by the algorithm)
of O(

q
d

n⌫

) for LSTD(0). All these results are for the on-
policy setting, except the one by Antos et al. [2008] that
also holds for the off-policy formulation. Another work
in the off-policy setting is by Ávila Pires and Szepesvári
[2012] that uses a bounding trick and improves the result
of Antos et al. [2008] by a log d factor.

The line of research reported here has much in common
with work on proximal reinforcement learning [Mahade-
van et al., 2014], which explores first-order reinforcement
learning algorithms using mirror maps [Bubeck, 2014; Ju-
ditsky et al., 2008] to construct primal-dual spaces. This
work began originally with a dual space formulation of
first-order sparse TD learning [Mahadevan and Liu, 2012].
A saddle point formulation for off-policy TD learning was
initially explored in Liu et al. [2012], where the objective
function is the norm of the approximation residual of a lin-
ear inverse problem [Ávila Pires and Szepesvári, 2012]. A
sparse off-policy GTD2 algorithm with regularized dual av-
eraging is introduced by Qin and Li [2014]. These studies
provide different approaches to formulating the problem,
first as a variational inequality problem [Juditsky et al.,
2008; Mahadevan et al., 2014] or as a linear inverse prob-
lem [Liu et al., 2012], or as a quadratic objective function
(MSPBE) using two-time-scale solvers [Qin and Li, 2014].
In this paper, we are going to explore the true nature of
the GTD algorithms as stochastic gradient algorithm w.r.t
the convex-concave saddle-point formulations of NEU and
MSPBE.

algorithms is novel and has not been reported in the litera-
ture. We then use the techniques applied in the analysis of
the stochastic gradient methods to propose a unified finite-
sample analysis for the GTD and GTD2 algorithms. At the
end, given the results of our analysis, we study the GTD
class of algorithms from several different perspectives, in-
cluding acceleration in convergence, learning with biased
importance sampling factors, etc.

2 Preliminaries

Reinforcement Learning (RL) [Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998] is a class of learning prob-
lems in which an agent interacts with an unfamiliar, dy-
namic and stochastic environment, where the agent’s goal
is to optimize some measure of its long-term performance.
This interaction is conventionally modeled as a Markov
decision process (MDP). A MDP is defined as the tuple
(S,A, P a

ss

0 , R, �), where S and A are the sets of states and
actions, the transition kernel P a

ss

0 specifying the probabil-
ity of transition from state s 2 S to state s0 2 S by taking
action a 2 A, R(s, a) : S ⇥A ! R is the reward function
bounded by R

max

., and 0 � < 1 is a discount factor.
A stationary policy ⇡ : S ⇥ A ! [0, 1] is a probabilistic
mapping from states to actions. The main objective of a RL
algorithm is to find an optimal policy. In order to achieve
this goal, a key step in many algorithms is to calculate the
value function of a given policy ⇡, i.e., V ⇡

: S ! R, a
process known as policy evaluation. It is known that V ⇡ is
the unique fixed-point of the Bellman operator T⇡ , i.e.,

V ⇡

= T⇡V ⇡

= R⇡

+ �P⇡V ⇡, (1)

where R⇡ and P⇡ are the reward function and transition
kernel of the Markov chain induced by policy ⇡. In Eq. 1,
we may imagine V ⇡ as a |S|-dimensional vector and write
everything in vector/matrix form. In the following, to sim-
plify the notation, we often drop the dependence of T⇡ ,
V ⇡ , R⇡ , and P⇡ to ⇡.

We denote by ⇡
b

, the behavior policy that generates the
data, and by ⇡, the target policy that we would like to eval-
uate. They are the same in the on-policy setting and dif-
ferent in the off-policy scenario. For each state-action pair
(s

i

, a
i

), such that ⇡
b

(a
i

|s
i

) > 0, we define the importance-
weighting factor ⇢

i

= ⇡(a
i

|s
i

)/⇡
b

(a
i

|s
i

) with ⇢
max

� 0

being its maximum value over the state-action pairs.

When S is large or infinite, we often use a linear ap-
proximation architecture for V ⇡ with parameters ✓ 2
Rd and L-bounded basis functions {'

i

}d
i=1

, i.e., '
i

:

S ! R and max

i

||'
i

||1 L. We denote by �(·) =�
'
1

(·), . . . ,'
d

(·)
�> the feature vector and by F the lin-

ear function space spanned by the basis functions {'
i

}d
i=1

,
i.e., F =

�
f
✓

| ✓ 2 Rd and f
✓

(·) = �(·)>✓

. We may
write the approximation of V in F in the vector form as
v̂ = �✓, where � is the |S| ⇥ d feature matrix. When

only n training samples of the form D =

��
s
i

, a
i

, r
i

=

r(s
i

, a
i

), s0
i

�
n

i=1

, s
i

⇠ ⇠, a
i

⇠ ⇡
b

(·|s
i

), s0
i

⇠
P (·|s

i

, a
i

), are available (⇠ is a distribution over the state
space S), we may write the empirical Bellman operator ˆT
for a function in F as

ˆT (ˆ�✓) = ˆR+ � ˆ�0✓, (2)

where ˆ

� (resp. ˆ

�

0) is the empirical feature matrix of
size n ⇥ d, whose i-th row is the feature vector �(s

i

)

>

(resp. �(s0
i

)

>), and ˆR 2 Rn is the reward vector, whose i-
th element is r

i

. We denote by �
i

(✓) = r
i

+ ��
0>
i

✓� �>
i

✓,
the TD error for the i-th sample (s

i

, r
i

, s0
i

) and define
��

i

= �
i

� ��0
i

. Finally, we define the matrices A and
C, and the vector b as

A := E
⇥
⇢i�i(��i)

>⇤, b := E [⇢i�iri] , C := E[�i�
>
i], (3)

where the expectations are w.r.t. ⇠ and P⇡b . We also denote
by ⌅, the diagonal matrix whose elements are ⇠(s), and
⇠
max

:= max

s

⇠(s). For each sample i in the training set
D, we can calculate an unbiased estimate of A, b, and C as
follows:

ˆA
i

:= ⇢
i

�
i

��>
i

, ˆb
i

:= ⇢
i

r
i

�
i

, ˆC
i

:= �
i

�>
i

. (4)

2.1 Gradient-based TD Algorithms

The class of gradient-based TD (GTD) algorithms were
proposed by Sutton et al. [2008, 2009]. These algorithms
target two objective functions: the norm of the expected
TD update (NEU) and the mean-square projected Bellman
error (MSPBE), defined as (see e.g., Maei 2011)1

NEU(✓) = ||�>
⌅(T v̂ � v̂)||2 , (5)

MSPBE(✓) = ||v̂ �⇧T v̂||2⇠ = ||�>
⌅(T v̂ � v̂)||2C�1

, (6)

where C = E[�
i

�>
i

] = �

>
⌅� is the covariance matrix

defined in Eq. 3 and is assumed to be non-singular, and
⇧ = �(�

>
⌅�)

�1

�

>
⌅ is the orthogonal projection oper-

ator into the function space F , i.e., for any bounded func-
tion g, ⇧g = argmin

f2F ||g � f ||
⇠

. From (5) and (6), it
is clear that NEU and MSPBE are square unweighted and
weighted by C�1, `

2

-norms of the quantity �

>
⌅(T v̂� v̂),

respectively, and thus, the two objective functions can be
unified as

J(✓) = ||�>
⌅(T v̂� v̂)||2

M

�1

= ||E[⇢
i

�
i

(✓)�
i

]||2
M

�1

, (7)

with M equals to the identity matrix I for NEU and to
the covariance matrix C for MSPBE. The second equality
in (7) holds because of the following lemma from Section
4.2 in Maei [2011].

1It is important to note that T in (5) and (6) is T⇡ , the Bellman
operator of the target policy ⇡.

algorithms is novel and has not been reported in the litera-
ture. We then use the techniques applied in the analysis of
the stochastic gradient methods to propose a unified finite-
sample analysis for the GTD and GTD2 algorithms. At the
end, given the results of our analysis, we study the GTD
class of algorithms from several different perspectives, in-
cluding acceleration in convergence, learning with biased
importance sampling factors, etc.

2 Preliminaries

Reinforcement Learning (RL) [Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998] is a class of learning prob-
lems in which an agent interacts with an unfamiliar, dy-
namic and stochastic environment, where the agent’s goal
is to optimize some measure of its long-term performance.
This interaction is conventionally modeled as a Markov
decision process (MDP). A MDP is defined as the tuple
(S,A, P a

ss

0 , R, �), where S and A are the sets of states and
actions, the transition kernel P a

ss

0 specifying the probabil-
ity of transition from state s 2 S to state s0 2 S by taking
action a 2 A, R(s, a) : S ⇥A ! R is the reward function
bounded by R

max

., and 0 � < 1 is a discount factor.
A stationary policy ⇡ : S ⇥ A ! [0, 1] is a probabilistic
mapping from states to actions. The main objective of a RL
algorithm is to find an optimal policy. In order to achieve
this goal, a key step in many algorithms is to calculate the
value function of a given policy ⇡, i.e., V ⇡

: S ! R, a
process known as policy evaluation. It is known that V ⇡ is
the unique fixed-point of the Bellman operator T⇡ , i.e.,

V ⇡

= T⇡V ⇡

= R⇡

+ �P⇡V ⇡, (1)

where R⇡ and P⇡ are the reward function and transition
kernel of the Markov chain induced by policy ⇡. In Eq. 1,
we may imagine V ⇡ as a |S|-dimensional vector and write
everything in vector/matrix form. In the following, to sim-
plify the notation, we often drop the dependence of T⇡ ,
V ⇡ , R⇡ , and P⇡ to ⇡.

We denote by ⇡
b

, the behavior policy that generates the
data, and by ⇡, the target policy that we would like to eval-
uate. They are the same in the on-policy setting and dif-
ferent in the off-policy scenario. For each state-action pair
(s

i

, a
i

), such that ⇡
b

(a
i

|s
i

) > 0, we define the importance-
weighting factor ⇢

i

= ⇡(a
i

|s
i

)/⇡
b

(a
i

|s
i

) with ⇢
max

� 0

being its maximum value over the state-action pairs.

When S is large or infinite, we often use a linear ap-
proximation architecture for V ⇡ with parameters ✓ 2
Rd and L-bounded basis functions {'

i

}d
i=1

, i.e., '
i

:

S ! R and max

i

||'
i

||1 L. We denote by �(·) =�
'
1

(·), . . . ,'
d

(·)
�> the feature vector and by F the lin-

ear function space spanned by the basis functions {'
i

}d
i=1

,
i.e., F =

�
f
✓

| ✓ 2 Rd and f
✓

(·) = �(·)>✓

. We may
write the approximation of V in F in the vector form as
v̂ = �✓, where � is the |S| ⇥ d feature matrix. When

only n training samples of the form D =

��
s
i

, a
i

, r
i

=

r(s
i

, a
i

), s0
i

�
n

i=1

, s
i

⇠ ⇠, a
i

⇠ ⇡
b

(·|s
i

), s0
i

⇠
P (·|s

i

, a
i

), are available (⇠ is a distribution over the state
space S), we may write the empirical Bellman operator ˆT
for a function in F as

ˆT (ˆ�✓) = ˆR+ � ˆ�0✓, (2)

where ˆ

� (resp. ˆ

�

0) is the empirical feature matrix of
size n ⇥ d, whose i-th row is the feature vector �(s

i

)

>

(resp. �(s0
i

)

>), and ˆR 2 Rn is the reward vector, whose i-
th element is r

i

. We denote by �
i

(✓) = r
i

+ ��
0>
i

✓� �>
i

✓,
the TD error for the i-th sample (s

i

, r
i

, s0
i

) and define
��

i

= �
i

� ��0
i

. Finally, we define the matrices A and
C, and the vector b as

A := E
⇥
⇢i�i(��i)

>⇤, b := E [⇢i�iri] , C := E[�i�
>
i], (3)

where the expectations are w.r.t. ⇠ and P⇡b . We also denote
by ⌅, the diagonal matrix whose elements are ⇠(s), and
⇠
max

:= max

s

⇠(s). For each sample i in the training set
D, we can calculate an unbiased estimate of A, b, and C as
follows:

ˆA
i

:= ⇢
i

�
i

��>
i

, ˆb
i

:= ⇢
i

r
i

�
i

, ˆC
i

:= �
i

�>
i

. (4)

2.1 Gradient-based TD Algorithms

The class of gradient-based TD (GTD) algorithms were
proposed by Sutton et al. [2008, 2009]. These algorithms
target two objective functions: the norm of the expected
TD update (NEU) and the mean-square projected Bellman
error (MSPBE), defined as (see e.g., Maei 2011)1

NEU(✓) = ||�>
⌅(T v̂ � v̂)||2 , (5)

MSPBE(✓) = ||v̂ �⇧T v̂||2⇠ = ||�>
⌅(T v̂ � v̂)||2C�1

, (6)

where C = E[�
i

�>
i

] = �

>
⌅� is the covariance matrix

defined in Eq. 3 and is assumed to be non-singular, and
⇧ = �(�

>
⌅�)

�1

�

>
⌅ is the orthogonal projection oper-

ator into the function space F , i.e., for any bounded func-
tion g, ⇧g = argmin

f2F ||g � f ||
⇠

. From (5) and (6), it
is clear that NEU and MSPBE are square unweighted and
weighted by C�1, `

2

-norms of the quantity �

>
⌅(T v̂� v̂),

respectively, and thus, the two objective functions can be
unified as

J(✓) = ||�>
⌅(T v̂� v̂)||2

M

�1

= ||E[⇢
i

�
i

(✓)�
i

]||2
M

�1

, (7)

with M equals to the identity matrix I for NEU and to
the covariance matrix C for MSPBE. The second equality
in (7) holds because of the following lemma from Section
4.2 in Maei [2011].

1It is important to note that T in (5) and (6) is T⇡ , the Bellman
operator of the target policy ⇡.

Unified Objective for
Gradient TD

algorithms is novel and has not been reported in the litera-
ture. We then use the techniques applied in the analysis of
the stochastic gradient methods to propose a unified finite-
sample analysis for the GTD and GTD2 algorithms. At the
end, given the results of our analysis, we study the GTD
class of algorithms from several different perspectives, in-
cluding acceleration in convergence, learning with biased
importance sampling factors, etc.

2 Preliminaries

Reinforcement Learning (RL) [Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998] is a class of learning prob-
lems in which an agent interacts with an unfamiliar, dy-
namic and stochastic environment, where the agent’s goal
is to optimize some measure of its long-term performance.
This interaction is conventionally modeled as a Markov
decision process (MDP). A MDP is defined as the tuple
(S,A, P a

ss

0 , R, �), where S and A are the sets of states and
actions, the transition kernel P a

ss

0 specifying the probabil-
ity of transition from state s 2 S to state s0 2 S by taking
action a 2 A, R(s, a) : S ⇥A ! R is the reward function
bounded by R

max

., and 0 � < 1 is a discount factor.
A stationary policy ⇡ : S ⇥ A ! [0, 1] is a probabilistic
mapping from states to actions. The main objective of a RL
algorithm is to find an optimal policy. In order to achieve
this goal, a key step in many algorithms is to calculate the
value function of a given policy ⇡, i.e., V ⇡

: S ! R, a
process known as policy evaluation. It is known that V ⇡ is
the unique fixed-point of the Bellman operator T⇡ , i.e.,

V ⇡

= T⇡V ⇡

= R⇡

+ �P⇡V ⇡, (1)

where R⇡ and P⇡ are the reward function and transition
kernel of the Markov chain induced by policy ⇡. In Eq. 1,
we may imagine V ⇡ as a |S|-dimensional vector and write
everything in vector/matrix form. In the following, to sim-
plify the notation, we often drop the dependence of T⇡ ,
V ⇡ , R⇡ , and P⇡ to ⇡.

We denote by ⇡
b

, the behavior policy that generates the
data, and by ⇡, the target policy that we would like to eval-
uate. They are the same in the on-policy setting and dif-
ferent in the off-policy scenario. For each state-action pair
(s

i

, a
i

), such that ⇡
b

(a
i

|s
i

) > 0, we define the importance-
weighting factor ⇢

i

= ⇡(a
i

|s
i

)/⇡
b

(a
i

|s
i

) with ⇢
max

� 0

being its maximum value over the state-action pairs.

When S is large or infinite, we often use a linear ap-
proximation architecture for V ⇡ with parameters ✓ 2
Rd and L-bounded basis functions {'

i

}d
i=1

, i.e., '
i

:

S ! R and max

i

||'
i

||1 L. We denote by �(·) =�
'
1

(·), . . . ,'
d

(·)
�> the feature vector and by F the lin-

ear function space spanned by the basis functions {'
i

}d
i=1

,
i.e., F =

�
f
✓

| ✓ 2 Rd and f
✓

(·) = �(·)>✓

. We may
write the approximation of V in F in the vector form as
v̂ = �✓, where � is the |S| ⇥ d feature matrix. When

only n training samples of the form D =

��
s
i

, a
i

, r
i

=

r(s
i

, a
i

), s0
i

�
n

i=1

, s
i

⇠ ⇠, a
i

⇠ ⇡
b

(·|s
i

), s0
i

⇠
P (·|s

i

, a
i

), are available (⇠ is a distribution over the state
space S), we may write the empirical Bellman operator ˆT
for a function in F as

ˆT (ˆ�✓) = ˆR+ � ˆ�0✓, (2)

where ˆ

� (resp. ˆ

�

0) is the empirical feature matrix of
size n ⇥ d, whose i-th row is the feature vector �(s

i

)

>

(resp. �(s0
i

)

>), and ˆR 2 Rn is the reward vector, whose i-
th element is r

i

. We denote by �
i

(✓) = r
i

+ ��
0>
i

✓� �>
i

✓,
the TD error for the i-th sample (s

i

, r
i

, s0
i

) and define
��

i

= �
i

� ��0
i

. Finally, we define the matrices A and
C, and the vector b as

A := E
⇥
⇢i�i(��i)

>⇤, b := E [⇢i�iri] , C := E[�i�
>
i], (3)

where the expectations are w.r.t. ⇠ and P⇡b . We also denote
by ⌅, the diagonal matrix whose elements are ⇠(s), and
⇠
max

:= max

s

⇠(s). For each sample i in the training set
D, we can calculate an unbiased estimate of A, b, and C as
follows:

ˆA
i

:= ⇢
i

�
i

��>
i

, ˆb
i

:= ⇢
i

r
i

�
i

, ˆC
i

:= �
i

�>
i

. (4)

2.1 Gradient-based TD Algorithms

The class of gradient-based TD (GTD) algorithms were
proposed by Sutton et al. [2008, 2009]. These algorithms
target two objective functions: the norm of the expected
TD update (NEU) and the mean-square projected Bellman
error (MSPBE), defined as (see e.g., Maei 2011)1

NEU(✓) = ||�>
⌅(T v̂ � v̂)||2 , (5)

MSPBE(✓) = ||v̂ �⇧T v̂||2⇠ = ||�>
⌅(T v̂ � v̂)||2C�1

, (6)

where C = E[�
i

�>
i

] = �

>
⌅� is the covariance matrix

defined in Eq. 3 and is assumed to be non-singular, and
⇧ = �(�

>
⌅�)

�1

�

>
⌅ is the orthogonal projection oper-

ator into the function space F , i.e., for any bounded func-
tion g, ⇧g = argmin

f2F ||g � f ||
⇠

. From (5) and (6), it
is clear that NEU and MSPBE are square unweighted and
weighted by C�1, `

2

-norms of the quantity �

>
⌅(T v̂� v̂),

respectively, and thus, the two objective functions can be
unified as

J(✓) = ||�>
⌅(T v̂� v̂)||2

M

�1

= ||E[⇢
i

�
i

(✓)�
i

]||2
M

�1

, (7)

with M equals to the identity matrix I for NEU and to
the covariance matrix C for MSPBE. The second equality
in (7) holds because of the following lemma from Section
4.2 in Maei [2011].

1It is important to note that T in (5) and (6) is T⇡ , the Bellman
operator of the target policy ⇡.

M = I for NEU

M = C for MSPBE

J(✓) = kb�A✓k2M�1Primal objective function:

Saddle point formulation

Convex function
Saddle point function

J(✓) = kb�A✓k2M�1

min

✓
max

y
(L(✓, y) = hb�A✓, yi � 1

2

kyk2M

Lemma
(Liu et al., UAI 2015)

convex function such that

K(y)�K(x)� hrK(x), y � xi L
K

2

||x� y||2. (12)

Next we follow Juditsky et al. [2008]; Nemirovski et al.
[2009]; Chen et al. [2013] and define the following error
function for the saddle-point problem (11).

Definition 1. The error function of the saddle-point prob-
lem (11) at each point (✓0, y0) is defined as

Err(✓0, y0) = max

y

L(✓0, y)�min

✓

L(✓, y0). (13)

In this paper, we consider the saddle-point problem (11)
with F (✓) = 0 and K(y) = 1

2

||y||2
M

, i.e.,

min

✓

max

y

⇣
L(✓, y) = hb�A✓, yi � 1

2

||y||2
M

⌘
, (14)

where A and b were defined by Eq. 3, and M is a positive
definite matrix. It is easy to show that K(y) =

1

2

||y||2
M

satisfies the condition in Eq. 12.

We first show in Proposition 1 that if (✓⇤, y⇤) is the saddle-
point of problem (14), then ✓⇤ will be the optimum of NEU
and MSPBE defined in Eq. 7. We then prove in Proposi-
tion 2 that GTD and GTD2 in fact find this saddle-point.

Proposition 1. For any fixed ✓, we have 1

2

J(✓) =

max

y

L(✓, y), where J(✓) is defined by Eq. 7.

Proof. Since L(✓, y) is an unconstrained quadratic pro-
gram w.r.t. y, the optimal y⇤ = argmax

y

L(✓, y) can be
analytically computed as

y⇤(✓) = M�1

(b�A✓). (15)

The result follows by plugging y⇤ into (14) and using the
definition of J(✓) in Eq. 7 and Lemma 1.

Proposition 2. GTD and GTD2 are true stochastic gradi-
ent algorithms w.r.t. the objective function L(✓, y) of the
saddle-point problem (14) with M = I and M = C =

�

>
⌅� (the covariance matrix), respectively.

Proof. It is easy to see that the gradient updates of the
saddle-point problem (14) (ascending in y and descending
in ✓) may be written as

y
t+1

= y
t

+ ↵
t

(b�A✓
t

�My
t

) , (16)
✓
t+1

= ✓
t

+ ↵
t

A>y
t

.

We may obtain the update rules of GTD and GTD2 by re-
placing A, b, and C in (16) with their unbiased estimates
ˆA, ˆb, and ˆC from Eq. 4, which completes the proof.

As discussed at the beginning of this section, this saddle-
point formulation not only gives us the opportunity to use

the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:

ym
t = yt + ↵t(bt �At✓t �Mtyt), ✓mt = ✓t + ↵tA

>
t yt,

yt+1 = yt + ↵t(bt �At✓
m
t �Mty

m
t), ✓t+1 = ✓t + ↵tA

>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 1, and experimental comparison studies be-
tween GTD2 and GTD2-MP is reported in Section 6.

Algorithm 1 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t(✓t)� �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1 = yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1 = ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1 ↵t✓tPn
t=1 ↵t

, ȳn :=

Pn
t=1 ↵tytPn
t=1 ↵t

(17)

4 Finite-Sample Analysis of GTD and GTD2

In this section, we provide a finite-sample analysis for a
revised version of the GTD/GTD2 algorithms. We first de-
scribe the revised GTD algorithms in Section 4.1 and then
dedicate the rest of Section 4 to their sample analysis. Note
that from now on we use the M matrix (and its unbiased
estimate ˆM

t

) to have a unified analysis for GTD and GTD2
algorithms. As described earlier, M is replaced by the iden-
tity matrix I in GTD and by the covariance matrix C (and
its unbiased estimate ˆC

t

) in GTD2.

4.1 The Revised GTD Algorithms

The revised GTD algorithms that we analyze in this pa-
per (see Algorithm 2) have three differences with the stan-

“Gradient” TD Methods

Lemma 1. Let D =

��
s
i

, a
i

, r
i

, s0
i

�
n

i=1

, s
i

⇠ ⇠, a
i

⇠
⇡
b

(·|s
i

), s0
i

⇠ P (·|s
i

, a
i

) be a training set generated by
the behavior policy ⇡

b

and T be the Bellman operator of
the target policy ⇡. Then, we have

�

>
⌅(T v̂ � v̂) = E

⇥
⇢
i

�
i

(✓)�
i

⇤
= b�A✓.

Motivated by minimizing the NEU and MSPBE objective
functions using the stochastic gradient methods, the GTD
and GTD2 algorithms were proposed with the following
update rules:

GTD: y
t+1

= y
t

+ ↵
t

�
⇢
t

�
t

(✓
t

)�
t

� y
t

�
, (8)

✓
t+1

= ✓
t

+ ↵
t

⇢
t

��
t

(y>
t

�
t

),

GTD2: y
t+1

= y
t

+ ↵
t

�
⇢
t

�
t

(✓
t

)� �>
t

y
t

�
�
t

, (9)

✓
t+1

= ✓
t

+ ↵
t

⇢
t

��
t

(y>
t

�
t

).

However, it has been shown that the above update rules do
not update the value function parameter ✓ in the gradient di-
rection of NEU and MSPBE, and thus, NEU and MSPBE
are not the true objective functions of the GTD and GTD2
algorithms [Szepesvári, 2010]. Consider the NEU objec-
tive function in (5). Taking its gradient w.r.t. ✓, we obtain

�1

2

rNEU(✓) = �
�
rE

⇥
⇢
i

�
i

(✓)�
i

⇤�
E
⇥
⇢
i

�
i

(✓)�
i

⇤

= �
�
E
⇥
⇢
i

r�
i

(✓)�
i

⇤�
E
⇥
⇢
i

�
i

(✓)�
i

⇤

= E
⇥
⇢
i

��
i

�>
i

⇤
E
⇥
⇢
i

�
i

(✓)�
i

⇤
. (10)

If the gradient can be written as a single expectation, then
it is straightforward to use a stochastic gradient method.
However, we have a product of two expectations in (10),
and unfortunately, due to the correlation between them, the
sample product (with a single sample) won’t be an unbiased
estimate of the gradient. To tackle this, the GTD algorithm
uses an auxiliary variable y

t

to estimate E
⇥
⇢
i

�
i

(✓)�
i

⇤
, and

thus, the overall algorithm is no longer a true stochastic
gradient method w.r.t. NEU. It can be easily shown that the
same problem exists for GTD2 w.r.t. the MSPBE objective
function. This prevents us from using the standard con-
vergence analysis techniques of stochastic gradient descent
methods to obtain a finite-sample performance bound for
the GTD and GTD2 algorithms.

It should be also noted that in the original publications of
GTD/GTD2 algorithms [Sutton et al., 2008, 2009], the au-
thors discussed handling the off-policy scenario using both
importance and rejected sampling. In rejected sampling
that was mainly used in Sutton et al. [2008, 2009], a sample
(s

i

, a
i

, r
i

, s0
i

) is rejected and the parameter ✓ does not up-
date for this sample, if ⇡(a

i

|s
i

) = 0. This sampling strat-
egy is not efficient since a lot of samples will be discarded
if ⇡

b

and ⇡ are very different.

2.2 Related Work

Before we present a finite-sample performance bound for
GTD and GTD2, it would be helpful to give a brief
overview of the existing literature on finite-sample anal-
ysis of the TD algorithms. The convergence rate of the
TD algorithms mainly depends on (d, n, ⌫), where d is
the size of the approximation space (the dimension of the
feature vector), n is the number of samples, and ⌫ is the
smallest eigenvalue of the sample-based covariance matrix
ˆC =

ˆ

�

>
ˆ

�, i.e., ⌫ = �
min

(

ˆC).

Antos et al. [2008] proved an error bound of O(

d log d

n

1/4) for
LSTD in bounded spaces. Lazaric et al. [2010b] proposed
a LSTD analysis in leaner spaces and obtained a tighter

bound of O(

q
d log d

n⌫

) and later used it to derive a bound for
the least-squares policy iteration (LSPI) algorithm [Lazaric
et al., 2012]. Tagorti and Scherrer [2014] recently proposed
the first convergence analysis for LSTD(�) and derived a
bound of ˜O(d/⌫

p
n). The analysis is a bit different than

the one in Lazaric et al. [2010b] and the bound is weaker in
terms of d and ⌫. Another recent result is by Prashanth
et al. [2014] that use stochastic approximation to solve
LSTD(0), where the resulting algorithm is exactly TD(0)

with random sampling (samples are drawn i.i.d. and not
from a trajectory), and report a Markov design bound (the
bound is computed only at the states used by the algorithm)
of O(

q
d

n⌫

) for LSTD(0). All these results are for the on-
policy setting, except the one by Antos et al. [2008] that
also holds for the off-policy formulation. Another work
in the off-policy setting is by Ávila Pires and Szepesvári
[2012] that uses a bounding trick and improves the result
of Antos et al. [2008] by a log d factor.

3 Saddle-Point Formulation of the GTD
Algorithms

In this section, we show how the GTD and GTD2 algo-
rithms can be formulated as true stochastic gradient (SG)
algorithms by writing their respective objective functions,
NEU and MSPBE, in the form of a convex-concave saddle-
point. As discussed earlier, this new formulation of GTD
and GTD2 as true SG methods allows us to use the con-
vergence analysis techniques for SGs in order to derive
finite-sample performance bounds for these RL algorithms.
Moreover, it allows us to use more efficient algorithms that
have been recently developed to solve SG problems, such
as stochastic Mirror-Prox (SMP) [Juditsky et al., 2008], to
derive more efficient versions of GTD and GTD2.

A particular type of convex-concave saddle-point formula-
tion is formally defined as

min

✓

max

y

�
L(✓, y) = hb�A✓, yi+ F (✓)�K(y)

�
, (11)

where F (✓) is a convex function and K(y) is a smooth

(Sutton et al., 2009)

algorithms is novel and has not been reported in the litera-
ture. We then use the techniques applied in the analysis of
the stochastic gradient methods to propose a unified finite-
sample analysis for the GTD and GTD2 algorithms. At the
end, given the results of our analysis, we study the GTD
class of algorithms from several different perspectives, in-
cluding acceleration in convergence, learning with biased
importance sampling factors, etc.

2 Preliminaries

Reinforcement Learning (RL) [Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998] is a class of learning prob-
lems in which an agent interacts with an unfamiliar, dy-
namic and stochastic environment, where the agent’s goal
is to optimize some measure of its long-term performance.
This interaction is conventionally modeled as a Markov
decision process (MDP). A MDP is defined as the tuple
(S,A, P a

ss

0 , R, �), where S and A are the sets of states and
actions, the transition kernel P a

ss

0 specifying the probabil-
ity of transition from state s 2 S to state s0 2 S by taking
action a 2 A, R(s, a) : S ⇥A ! R is the reward function
bounded by R

max

., and 0 � < 1 is a discount factor.
A stationary policy ⇡ : S ⇥ A ! [0, 1] is a probabilistic
mapping from states to actions. The main objective of a RL
algorithm is to find an optimal policy. In order to achieve
this goal, a key step in many algorithms is to calculate the
value function of a given policy ⇡, i.e., V ⇡

: S ! R, a
process known as policy evaluation. It is known that V ⇡ is
the unique fixed-point of the Bellman operator T⇡ , i.e.,

V ⇡

= T⇡V ⇡

= R⇡

+ �P⇡V ⇡, (1)

where R⇡ and P⇡ are the reward function and transition
kernel of the Markov chain induced by policy ⇡. In Eq. 1,
we may imagine V ⇡ as a |S|-dimensional vector and write
everything in vector/matrix form. In the following, to sim-
plify the notation, we often drop the dependence of T⇡ ,
V ⇡ , R⇡ , and P⇡ to ⇡.

We denote by ⇡
b

, the behavior policy that generates the
data, and by ⇡, the target policy that we would like to eval-
uate. They are the same in the on-policy setting and dif-
ferent in the off-policy scenario. For each state-action pair
(s

i

, a
i

), such that ⇡
b

(a
i

|s
i

) > 0, we define the importance-
weighting factor ⇢

i

= ⇡(a
i

|s
i

)/⇡
b

(a
i

|s
i

) with ⇢
max

� 0

being its maximum value over the state-action pairs.

When S is large or infinite, we often use a linear ap-
proximation architecture for V ⇡ with parameters ✓ 2
Rd and L-bounded basis functions {'

i

}d
i=1

, i.e., '
i

:

S ! R and max

i

||'
i

||1 L. We denote by �(·) =�
'
1

(·), . . . ,'
d

(·)
�> the feature vector and by F the lin-

ear function space spanned by the basis functions {'
i

}d
i=1

,
i.e., F =

�
f
✓

| ✓ 2 Rd and f
✓

(·) = �(·)>✓

. We may
write the approximation of V in F in the vector form as
v̂ = �✓, where � is the |S| ⇥ d feature matrix. When

only n training samples of the form D =

��
s
i

, a
i

, r
i

=

r(s
i

, a
i

), s0
i

�
n

i=1

, s
i

⇠ ⇠, a
i

⇠ ⇡
b

(·|s
i

), s0
i

⇠
P (·|s

i

, a
i

), are available (⇠ is a distribution over the state
space S), we may write the empirical Bellman operator ˆT
for a function in F as

ˆT (ˆ�✓) = ˆR+ � ˆ�0✓, (2)

where ˆ

� (resp. ˆ

�

0) is the empirical feature matrix of
size n ⇥ d, whose i-th row is the feature vector �(s

i

)

>

(resp. �(s0
i

)

>), and ˆR 2 Rn is the reward vector, whose i-
th element is r

i

. We denote by �
i

(✓) = r
i

+ ��
0>
i

✓� �>
i

✓,
the TD error for the i-th sample (s

i

, r
i

, s0
i

) and define
��

i

= �
i

� ��0
i

. Finally, we define the matrices A and
C, and the vector b as

A := E
⇥
⇢i�i(��i)

>⇤, b := E [⇢i�iri] , C := E[�i�
>
i], (3)

where the expectations are w.r.t. ⇠ and P⇡b . We also denote
by ⌅, the diagonal matrix whose elements are ⇠(s), and
⇠
max

:= max

s

⇠(s). For each sample i in the training set
D, we can calculate an unbiased estimate of A, b, and C as
follows:

ˆA
i

:= ⇢
i

�
i

��>
i

, ˆb
i

:= ⇢
i

r
i

�
i

, ˆC
i

:= �
i

�>
i

. (4)

2.1 Gradient-based TD Algorithms

The class of gradient-based TD (GTD) algorithms were
proposed by Sutton et al. [2008, 2009]. These algorithms
target two objective functions: the norm of the expected
TD update (NEU) and the mean-square projected Bellman
error (MSPBE), defined as (see e.g., Maei 2011)1

NEU(✓) = ||�>
⌅(T v̂ � v̂)||2 , (5)

MSPBE(✓) = ||v̂ �⇧T v̂||2⇠ = ||�>
⌅(T v̂ � v̂)||2C�1

, (6)

where C = E[�
i

�>
i

] = �

>
⌅� is the covariance matrix

defined in Eq. 3 and is assumed to be non-singular, and
⇧ = �(�

>
⌅�)

�1

�

>
⌅ is the orthogonal projection oper-

ator into the function space F , i.e., for any bounded func-
tion g, ⇧g = argmin

f2F ||g � f ||
⇠

. From (5) and (6), it
is clear that NEU and MSPBE are square unweighted and
weighted by C�1, `

2

-norms of the quantity �

>
⌅(T v̂� v̂),

respectively, and thus, the two objective functions can be
unified as

J(✓) = ||�>
⌅(T v̂� v̂)||2

M

�1

= ||E[⇢
i

�
i

(✓)�
i

]||2
M

�1

, (7)

with M equals to the identity matrix I for NEU and to
the covariance matrix C for MSPBE. The second equality
in (7) holds because of the following lemma from Section
4.2 in Maei [2011].

1It is important to note that T in (5) and (6) is T⇡ , the Bellman
operator of the target policy ⇡.

Analysis of gradient TD

Algorithm 1 Revised GTD Algorithms
1: for t = 1, . . . , n do
2: Update parameters

yt+1

= ⇧Y

⇣
yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt)
⌘

✓t+1

= ⇧

⇥

⇣
✓t + ↵t

ˆA>
t yt

⌘
(17)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(18)

quite standard and are similar to those made in the prior
work on GTD algorithms [Sutton et al., 2008, 2009; Maei,
2011] and those made in the analysis of SG algorithms [Ne-
mirovski et al., 2009].
Assumption 2. (Feasibility Sets) We define the bounded
closed convex sets ⇥ ⇢ Rd and Y ⇢ Rd as the feasible sets
in Algorithm 1. We further assume that the saddle-point
(✓⇤, y⇤) of the optimization problem (14) belongs to ⇥⇥Y .
We also define D

✓

:=

⇥
max

✓2⇥

||✓||2
2

�min

✓2⇥

||✓||2
2

⇤
1/2,

D
y

:=

⇥
max

y2Y

||y||2
2

� min

y2Y

||y||2
2

⇤
1/2, and R =

max

�
max

✓2⇥

||✓||
2

,max

y2Y

||y||
2

.

Assumption 3. (Non-singularity) We assume that the
covariance matrix C = E[�

i

�>
i

] and matrix A =

E
⇥
⇢
i

�
i

(��
i

)

>⇤ are non-singular.
Assumption 4. (Boundedness) Assume the features
(�

i

,�
0

i

) have uniformly bounded second moments. This
together with the boundedness of features (by L) and im-
portance weights (by ⇢

max

) guarantees that the matrices A
and C, and vector b are uniformly bounded.

This assumption guarantees that for any (✓, y) 2 ⇥ ⇥ Y ,
the unbiased estimators of b�A✓ �My and A>y, i.e.,

E[ˆb
t

� ˆA
t

✓ � ˆM
t

y] = b�A✓ �My,

E[ˆA>
t

y] = A>y, (19)

all have bounded variance, i.e.,

E
⇥
||ˆb

t

� ˆA
t

✓ � ˆM
t

y � (b�A✓ �My)||2
⇤
 �2

1

,

E
⇥
|| ˆA>

t

y �A>y||2
⇤
 �2

2

, (20)

where �
1

and �
2

are non-negative constants. We further
define

�2

= �2

1

+ �2

2

. (21)

Assumption 4 also gives us the following “light-tail” as-
sumption. There exist constants M⇤,✓ and M⇤,y such that

E[exp{ ||
ˆbt � ˆAt✓ � ˆMty||2

M2

⇤,✓

}] exp{1},

E[exp{ ||
ˆA>
t y||2

M2

⇤,y
}] exp{1}. (22)

This “light-tail” assumption is equivalent to the assumption
in Eq. 3.16 in Nemirovski et al. [2009] and is necessary for
the high-probability bound of Proposition 3. We will show
how to compute M⇤,✓,M⇤,y in the Appendix.

4.3 FINITE-SAMPLE PERFORMANCE BOUNDS

The finite-sample performance bounds that we derive for
the GTD algorithms in this section are for the case that the
training set D has been generated as discussed in Section 2.
We further discriminate between the on-policy (⇡ = ⇡

b

)
and off-policy (⇡ 6= ⇡

b

) scenarios. The sampling scheme
used to generate D, in which the first state of each tuple,
s
i

, is an i.i.d. sample from a distribution ⇠, also considered
in the original GTD and and GTD2 papers, for the anal-
ysis of these algorithms, and not in the experiments [Sut-
ton et al., 2008, 2009]. Another scenario that can motivate
this sampling scheme is when we are given a set of high-
dimensional data generated either in an on-policy or off-
policy manner, and d is so large that the value function of
the target policy cannot be computed using a least-squares
method (that involves matrix inversion), and iterative tech-
niques similar to GTD/GTD2 are required.

We first derive a high-probability bound on the error func-
tion of the saddle-point problem (14) at the GTD solution
(

¯✓
n

, ȳ
n

). Before stating this result in Proposition 3, we re-
port the following lemma that is used in its proof.
Lemma 2. The induced `

2

-norm of matrix A and the `
2

-
norm of vector b are bounded by

||A||
2

 (1 + �)⇢
max

L2d, ||b||
2

 ⇢
max

LR
max

. (23)

Proof. See the supplementary material.

Proposition 3. Let (¯✓
n

, ȳ
n

) be the output of the GTD algo-
rithm after n iterations (see Eq. 18). Then, with probability
at least 1� �, we have

Err(

¯✓
n

, ȳ
n

)
r

5

n
(8 + 2 log

2

�
)R2 (24)

⇥
✓
⇢
max

L
⇣
2(1 + �)Ld+

R
max

R

⌘
+ ⌧ +

�

R

◆
,

where Err(

¯✓
n

, ȳ
n

) is the error function of the saddle-point
problem (14) defined by Eq. 13, R defined in Assump-
tion 2, � is from Eq. 21, and ⌧ = �

max

(M) is the largest
singular value of M , which means ⌧ = 1 for GTD and
⌧ = �

max

(C) for GTD2.

Proof. See the supplementary material.

Theorem 1. Let ¯✓
n

be the output of the GTD algorithm
after n iterations (see Eq. 18). Then, with probability at
least 1� �, we have

1

2

||A¯✓
n

� b||2
⇠

 ⌧⇠
max

Err(

¯✓
n

, ȳ
n

). (25)

What is the “optimal” gradient TD method?

with probability at least 1� �, we have

||V � v̄
n

||
⇠

1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

(33)

+

s
2⌧

C

⌧⇠
max

�
min

(A>M�1A)

Err(

¯✓
n

, ȳ
n

),

where ⌧
C

= �
max

(C).

Proof. See the supplementary material.

5 Accelerated Algorithm

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt), ✓mt = ✓t + ↵t
ˆA>
t yt,

yt+1

= yt + ↵t(
ˆbt � ˆAt✓

m
t � ˆMty

m
t), ✓t+1

= ✓t + ↵t
ˆA>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 Further Analysis

6.1 Acceleration Analysis

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2

||A✓� b||2
M

�1

, and the
corresponding error bound of 1

2

||A✓� b||2
⇠

and kV � v̄
n

||
⇠

can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||

2

+ �p
n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1

= yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1

= ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2

+

||A||
2

n
+

�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||

2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 Learning with Biased ⇢
t

The importance weight factor ⇢
t

is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢

t

may not be
estimated exactly, i.e., the estimation ⇢̂

t

is a biased esti-
mation of the true ⇢

t

. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

with probability at least 1� �, we have

||V � v̄
n

||
⇠

1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

(33)

+

s
2⌧

C

⌧⇠
max

�
min

(A>M�1A)

Err(

¯✓
n

, ȳ
n

),

where ⌧
C

= �
max

(C).

Proof. See the supplementary material.

5 Accelerated Algorithm

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt), ✓mt = ✓t + ↵t
ˆA>
t yt,

yt+1

= yt + ↵t(
ˆbt � ˆAt✓

m
t � ˆMty

m
t), ✓t+1

= ✓t + ↵t
ˆA>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 Further Analysis

6.1 Acceleration Analysis

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2

||A✓� b||2
M

�1

, and the
corresponding error bound of 1

2

||A✓� b||2
⇠

and kV � v̄
n

||
⇠

can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||

2

+ �p
n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1

= yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1

= ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2

+

||A||
2

n
+

�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||

2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 Learning with Biased ⇢
t

The importance weight factor ⇢
t

is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢

t

may not be
estimated exactly, i.e., the estimation ⇢̂

t

is a biased esti-
mation of the true ⇢

t

. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

Variational Inequality

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

hF (x⇤), x� x

⇤i � 0, 8x 2 K

Extragradient Method

xk

�F(xk)

�F(yk)
yk

xk+1

K

Korpolevich (1970s) developed the extragradient method
for solving saddle point problems and variational

inequalities

 Extragradient
TD-Learning

with probability at least 1� �, we have

||V � v̄
n

||
⇠

1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

(33)

+

s
2⌧

C

⌧⇠
max

�
min

(A>M�1A)

Err(

¯✓
n

, ȳ
n

),

where ⌧
C

= �
max

(C).

Proof. See the supplementary material.

5 ACCELERATED ALGORITHM

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt), ✓mt = ✓t + ↵t
ˆA>
t yt,

yt+1

= yt + ↵t(
ˆbt � ˆAt✓

m
t � ˆMty

m
t), ✓t+1

= ✓t + ↵t
ˆA>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 FURTHER ANALYSIS

6.1 ACCELERATION ANALYSIS

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2

||A✓� b||2
M

�1

, and the
corresponding error bound of 1

2

||A✓� b||2
⇠

and kV � v̄
n

||
⇠

can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||

2

+ �p
n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1

= yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1

= ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2

+

||A||
2

n
+

�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||

2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 LEARNING WITH BIASED ⇢
t

The importance weight factor ⇢
t

is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢

t

may not be
estimated exactly, i.e., the estimation ⇢̂

t

is a biased esti-
mation of the true ⇢

t

. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

What is the “optimal” gradient TD method?

with probability at least 1� �, we have

||V � v̄
n

||
⇠

1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

(33)

+

s
2⌧

C

⌧⇠
max

�
min

(A>M�1A)

Err(

¯✓
n

, ȳ
n

),

where ⌧
C

= �
max

(C).

Proof. See the supplementary material.

5 Accelerated Algorithm

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt), ✓mt = ✓t + ↵t
ˆA>
t yt,

yt+1

= yt + ↵t(
ˆbt � ˆAt✓

m
t � ˆMty

m
t), ✓t+1

= ✓t + ↵t
ˆA>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 Further Analysis

6.1 Acceleration Analysis

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2

||A✓� b||2
M

�1

, and the
corresponding error bound of 1

2

||A✓� b||2
⇠

and kV � v̄
n

||
⇠

can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||

2

+ �p
n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1

= yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1

= ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2

+

||A||
2

n
+

�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||

2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 Learning with Biased ⇢
t

The importance weight factor ⇢
t

is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢

t

may not be
estimated exactly, i.e., the estimation ⇢̂

t

is a biased esti-
mation of the true ⇢

t

. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

with probability at least 1� �, we have

||V � v̄
n

||
⇠

1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

(33)

+

s
2⌧

C

⌧⇠
max

�
min

(A>M�1A)

Err(

¯✓
n

, ȳ
n

),

where ⌧
C

= �
max

(C).

Proof. See the supplementary material.

5 Accelerated Algorithm

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt), ✓mt = ✓t + ↵t
ˆA>
t yt,

yt+1

= yt + ↵t(
ˆbt � ˆAt✓

m
t � ˆMty

m
t), ✓t+1

= ✓t + ↵t
ˆA>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 Further Analysis

6.1 Acceleration Analysis

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2

||A✓� b||2
M

�1

, and the
corresponding error bound of 1

2

||A✓� b||2
⇠

and kV � v̄
n

||
⇠

can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||

2

+ �p
n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1

= yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1

= ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2

+

||A||
2

n
+

�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||

2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 Learning with Biased ⇢
t

The importance weight factor ⇢
t

is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢

t

may not be
estimated exactly, i.e., the estimation ⇢̂

t

is a biased esti-
mation of the true ⇢

t

. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

with probability at least 1� �, we have

||V � v̄
n

||
⇠

1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

(33)

+

s
2⌧

C

⌧⇠
max

�
min

(A>M�1A)

Err(

¯✓
n

, ȳ
n

),

where ⌧
C

= �
max

(C).

Proof. See the supplementary material.

5 Accelerated Algorithm

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt), ✓mt = ✓t + ↵t
ˆA>
t yt,

yt+1

= yt + ↵t(
ˆbt � ˆAt✓

m
t � ˆMty

m
t), ✓t+1

= ✓t + ↵t
ˆA>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 Further Analysis

6.1 Acceleration Analysis

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2

||A✓� b||2
M

�1

, and the
corresponding error bound of 1

2

||A✓� b||2
⇠

and kV � v̄
n

||
⇠

can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||

2

+ �p
n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1

= yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1

= ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2

+

||A||
2

n
+

�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||

2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 Learning with Biased ⇢
t

The importance weight factor ⇢
t

is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢

t

may not be
estimated exactly, i.e., the estimation ⇢̂

t

is a biased esti-
mation of the true ⇢

t

. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

“almost" dimension-free
scalability

GTD-MP

Mirror-Prox
(Nemirovski, 2005)

r�

r�⇤

xt
xt+1 X

r�(xt)

D

�⌘rf(yt+1)

r�(x0
t+1)

r�(y0t+1)

�⌘rf(xt)

extragradient step

Rn

Proximal Gradient TD Algorithms

Baird MDP

exact stochastic gradient. Based on the analysis by Juditsky
et al. [2008], we have the error bound for inexact estima-
tion of ⇢

t

.
Proposition 6. Let ¯✓

n

be defined as above. Assume at the
t-th iteration, ⇢̂

t

is the estimation of the importance weight
factor ⇢

t

with bounded bias such that E[⇢̂
t

� ⇢
t

] ✏. The
convergence rates of GTD/GTD2 algorithms with iterative
averaging is as follows, i.e.,

||A¯✓
n

� b||2
M

�1

 O

✓
⌧ + ||A||

2

+ �p
n

◆
+O(✏) (38)

This implies that the inexact estimation of ⇢
t

may cause
disastrous estimation error, which implies that an exact es-
timation of ⇢

t

is very important.

6.3 FINITE-SAMPLE ANALYSIS OF ONLINE
LEARNING

Another more challenging scenario is online learning sce-
nario, where the samples are interactively generated by
the environment, or by an interactive agent. The diffi-
culty lies in that the sample distribution does not follow
i.i.d sampling condition anymore, but follows an underly-
ing Markov chain M. If the Markov chain M’s mixing
time is small enough, i.e., the sample distribution reduces
to the stationary distribution of ⇡

b

very fast, our analy-
sis still applies. However, it is usually the case that the
underlying Markov chain’s mixing time ⌧

mix

is not small
enough. The analysis result can be obtained by extending
the result of recent work [Duchi et al., 2012] from strongly
convex loss functions to saddle-point problems, which is
non-trivial and is thus left for future work.

6.4 DISCUSSION OF TDC ALGORITHM

Now we discuss the limitation of our analysis with regard
to the temporal difference with correction (TDC) algorithm
[Sutton et al., 2009]. Interestingly, the TDC algorithm
seems not to have an explicit saddle-point representation,
since it incorporates the information of the optimal y⇤

t

(✓
t

)

into the update of ✓
t

, a quasi-stationary condition which
is commonly used in two-time-scale stochastic approxima-
tion approaches. An intuitive answer to the advantage of
TDC over GTD2 is that the TDC update of ✓

t

can be con-
sidered as incorporating the prior knowledge into the up-
date rule: for a stationary ✓

t

, if the optimal y⇤
t

(✓
t

) has a
closed-form solution or is easy to compute, then incorpo-
rating this y⇤

t

(✓
t

) into the update law tends to accelerate
the algorithm’s convergence performance. For the GTD2
update, note that there is a sum of two terms where y

t

ap-
pears, which are ⇢

t

(�
t

� ��0
t

)(yT
t

�
t

) = ⇢
t

�
t

(yT
t

�
t

) �
�⇢

t

�0
t

(yT
t

�
t

). Replacing y
t

in the first term with y⇤
t

(✓
t

) =

E[�
t

�T

t
]

�1E[⇢
t

�
t

(✓
t

)�
t

], we have the TDC update rule.
Note that in contrast to GTD/GTD2, TDC is a two-time
scale algorithm; Also, note that TDC does not minimize

any objective functions and the convergence of TDC re-
quires more restrictions than GTD2 as shown by Sutton et
al. [2009].

7 EMPIRICAL EVALUATION

In this section, we compare the previous GTD2 method
with our proposed GTD2-MP method using various do-
mains with regard to their value function approximation
performance capability. It should be mentioned that since
the major focus of this paper is on policy evaluation, the
comparative study focuses on value function approxima-
tion and thus comparisons on control learning performance
is not reported in this paper.

7.1 BAIRD DOMAIN

The Baird example [Baird, 1995] is a well-known example
to test the performance of off-policy convergent algorithms.
Constant stepsize ↵ = 0.005 for GTD2 and ↵ = 0.004 for
GTD2-MP, which are chosen via comparison studies as in
[Dann et al., 2014]. Figure 1 shows the MSPBE curve of
GTD2, GTD2-MP of 8000 steps averaged over 200 runs.
We can see that GTD2-MP has a significant improvement
over the GTD2 algorithm wherein both the MSPBE and the
variance are substantially reduced.

Figure 1: Off-Policy Convergence Comparison

7.2 50-STATE CHAIN DOMAIN

The 50 state chain [Lagoudakis and Parr, 2003] is a stan-
dard MDP domain. There are 50 discrete states {s

i

}50
i=1

and two actions moving the agent left s
i

! s
max(i�1,1)

and
right s

i

! s
min(i+1,50)

. The actions succeed with proba-
bility 0.9; failed actions move the agent in the opposite di-
rection. The discount factor is � = 0.9. The agent receives
a reward of +1 when in states s

10

and s
41

. All other states
have a reward of 0. In this experiment, we compare the per-
formance of the value approximation w.r.t different set of
stepsizes ↵ = 0.0001, 0.001, 0.01, 0.1, 0.2, · · · , 0.9 using
the BEBF basis [Parr et al., 2007], and Figure 2 shows the
value function approximation result, where the cyan curve

Our
new

method

Previous
method

50 state chain domain

Figure 2: Chain Domain

is the true value function, the red dashed curve is the GTD
result,and the black curve is the GTD2-MP result. From
the figure, one can see that GTD2-MP is much more robust
with stepsize choice than the GTD2 algorithm.

7.3 ENERGY MANAGEMENT DOMAIN

In this experiment we compare the performance of the al-
gorithms on an energy management domain. The decision
maker must decide how much energy to purchase or sell
subject to stochastic prices. This problem is relevant in the
context of utilities as well as in settings such as hybrid ve-
hicles. The prices are generated from a Markov chain pro-
cess. The amount of available storage is limited and it also
degrades with use. The degradation process is based on the
physical properties of lithium-ion batteries and discourages
fully charging or discharging the battery. The energy arbi-
trage problem is closely related to the broad class of in-
ventory management problems, with the storage level cor-
responding to the inventory. However, there are no known
results describing the structure of optimal threshold poli-
cies in energy storage.

Note that since for this off-policy evaluation problem, the
formulated A✓ = b does not have a solution, and thus the
optimal MSPBE(✓⇤) (resp. MSBE(✓⇤)) do not reduce to
0. The result is averaged over 200 runs, and ↵ = 0.001
for both GTD2 and GTD2-MP is chosen via comparison
studies for each algorithm. As can be seen from FIgure 3,
in the initial transit state, GTD2-MP performs much bet-
ter than GTD2 at the transient state. Then after reaching
the steady state, as can be seen from Table 1, we can see
that GTD2-MP reaches better steady state solution than the
GTD algorithm. Based on the above empirical results and
many other experiments we have conducted in other do-
mains, we can conclude that GTD2-MP usually performs
much better than the “vanilla” GTD2 algorithm.

Figure 3: Energy Management Example

Algorithm MSPBE MSBE
GTD2 176.4 228.7

GTD2-MP 138.6 191.4

Table 1: Steady State Performance Comparison

8 SUMMARY

In this paper, we showed how gradient TD methods can be
shown to be true stochastic gradient methods with respect
to a saddle-point primal-dual objective function, which
paved the way for the finite-sample analysis of off-policy
convergent gradient-based temporal difference learning al-
gorithms such as GTD and GTD2. Both error bound
and performance bound are provided, which shows that
the value function approximation bound of the GTD algo-
rithms family is O

�
d

n

1/4

�
. Further, two revised algorithms,

namely the projected GTD2 algorithm and the accelerated
GTD2-MP algorithm, are proposed. There are many inter-
esting directions for future research. Our framework can be
easily used to design regularized sparse gradient off-policy
TD methods. One interesting direction is to investigate the
convergence rate and performance bound for the TDC al-
gorithm, which lacks a saddle-point formulation. The other
is to explore tighter value function approximation bounds
for off-policy learning.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. IIS-1216467. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

Red: GTD
Black: GTD-MP
Cyan: True VF

20-Dimensional Robot Arm

Our new
method

Sutton
et al., 2009

Energy Management

Figure 2: Chain Domain

is the true value function, the red dashed curve is the GTD
result,and the black curve is the GTD2-MP result. From
the figure, one can see that GTD2-MP is much more robust
with stepsize choice than the GTD2 algorithm.

7.3 ENERGY MANAGEMENT DOMAIN

In this experiment we compare the performance of the al-
gorithms on an energy management domain. The decision
maker must decide how much energy to purchase or sell
subject to stochastic prices. This problem is relevant in the
context of utilities as well as in settings such as hybrid ve-
hicles. The prices are generated from a Markov chain pro-
cess. The amount of available storage is limited and it also
degrades with use. The degradation process is based on the
physical properties of lithium-ion batteries and discourages
fully charging or discharging the battery. The energy arbi-
trage problem is closely related to the broad class of in-
ventory management problems, with the storage level cor-
responding to the inventory. However, there are no known
results describing the structure of optimal threshold poli-
cies in energy storage.

Note that since for this off-policy evaluation problem, the
formulated A✓ = b does not have a solution, and thus the
optimal MSPBE(✓⇤) (resp. MSBE(✓⇤)) do not reduce to
0. The result is averaged over 200 runs, and ↵ = 0.001
for both GTD2 and GTD2-MP is chosen via comparison
studies for each algorithm. As can be seen from FIgure 3,
in the initial transit state, GTD2-MP performs much bet-
ter than GTD2 at the transient state. Then after reaching
the steady state, as can be seen from Table 1, we can see
that GTD2-MP reaches better steady state solution than the
GTD algorithm. Based on the above empirical results and
many other experiments we have conducted in other do-
mains, we can conclude that GTD2-MP usually performs
much better than the “vanilla” GTD2 algorithm.

Figure 3: Energy Management Example

Algorithm MSPBE MSBE
GTD2 176.4 228.7

GTD2-MP 138.6 191.4

Table 1: Steady State Performance Comparison

8 SUMMARY

In this paper, we showed how gradient TD methods can be
shown to be true stochastic gradient methods with respect
to a saddle-point primal-dual objective function, which
paved the way for the finite-sample analysis of off-policy
convergent gradient-based temporal difference learning al-
gorithms such as GTD and GTD2. Both error bound
and performance bound are provided, which shows that
the value function approximation bound of the GTD algo-
rithms family is O

�
d

n

1/4

�
. Further, two revised algorithms,

namely the projected GTD2 algorithm and the accelerated
GTD2-MP algorithm, are proposed. There are many inter-
esting directions for future research. Our framework can be
easily used to design regularized sparse gradient off-policy
TD methods. One interesting direction is to investigate the
convergence rate and performance bound for the TDC al-
gorithm, which lacks a saddle-point formulation. The other
is to explore tighter value function approximation bounds
for off-policy learning.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. IIS-1216467. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

“Safe” Reinforcement Learning

Philip Thomas, Will Dabney,
Stephen Giguere, Sridhar Mahadevan

NIPS 2013, ICML 2014

4 Mirror Descent

Mirror descent algorithms form a class of highly scalable online gradient methods that are useful
in constrained minimization of non-smooth functions [17, 18]. They have recently been applied to
value function approximation and basis adaptation for reinforcement learning [19, 20]. The mirror
descent update is

x

k+1 = r ⇤
k

�
r

k

(x

k

)� ↵

k

rf(x

k

)

�
, (1)

where
k

: Rn ! R is a continuously differentiable and strongly convex function called the proxi-
mal function, and where the conjugate of

k

is ⇤
k

(y) , max

x2Rn {x|
y �

k

(x)}, for any y 2 Rn.
Different choices of

k

result in different mirror descent algorithms. A common choice for a fixed

k

= , 8k, is the p-norm [20], and a common adaptive
k

is the Mahalanobis norm with a dynamic
covariance matrix [15].

Intuitively, the distance metric for the space that x
k

resides in is not necessarily the same as that of
the space that rf(x

k

) resides in. This suggests that it may not be appropriate to directly add x

k

and �↵
k

rf(x

k

) in the gradient descent update. To correct this, mirror descent moves x
k

into the
space of gradients (the dual space) with r

k

(x

k

) before performing the gradient update. It takes
the result of this step in gradient space and returns it to the space of x

k

(the primal space) with r ⇤
k

.
Different choices of

k

amount to different assumptions about the relationship between the primal
and dual spaces at x

k

.

5 Equivalence of Natural Gradient Descent and Mirror Descent

Theorem 5.1. The natural gradient descent update at step k with metric tensor G
k

, G(x

k

):

x

k+1 = x

k

� ↵

k

G

�1
k

rf(x

k

), (2)
is equivalent to (1), the mirror descent update at step k, with

k

(x) = (

1
/2)x|

G

k

x.

Proof. First, notice that r
k

(x) = G

k

x. Next, we derive a closed-form for ⇤
k

:

⇤
k

(y) = max

x2Rn

⇢
x

|
y � 1

2

x

|
G

k

x

�
. (3)

Since the function being maximized on the right hand side is strictly concave, the x that maximizes
it is its critical point. Solving for this critical point, we get x = G

�1
k

y. Substituting this into (3), we
find that ⇤

k

(y) = (

1
/2)y|G�1

k

y. Hence, r ⇤
k

(y) = G

�1
k

y. Inserting the definitions of r
k

(x) and
r ⇤

k

(y) into (1), we find that the mirror descent update is
x

k+1 =G

�1
k

(G

k

x

k

� ↵

k

rf(x

k

)) = x

k

� ↵

k

G

�1
k

rf(x

k

),

which is identical to (2). ⌅
Although researchers often use

k

that are norms like the p-norm and Mahalanobis norm, notice
that the

k

that results in natural gradient descent is not a norm. Also, since G
k

depends on k,
k

is
an adaptive proximal function [15].

6 Projected Natural Gradients

When x is constrained to some set, X ,
k

in mirror descent is augmented with the indicator function
I

X

, where I

X

(x) = 0 if x 2 X , and +1 otherwise. The
k

that was shown to generate an
update equivalent to the natural gradient descent update, with the added constraint that x 2 X , is

k

(x) = (

1
/2)x|

G

k

x+ I

X

(x). Hereafter, any references to
k

refer to this augmented version.

For this proximal function, the subdifferential of
k

(x) is r
k

(x) = G

k

(x) +

ˆ

N

X

(x) = (G

k

+

ˆ

N

X

)(x), where ˆ

N

X

(x) , @I

X

(x) and, in the middle term, G
k

and ˆ

N

X

are relations and + denotes
Minkowski addition.1 ˆ

N

X

(x) is the normal cone of X at x if x 2 X and ; otherwise [21].
r ⇤

k

(y) = (G

k

+

ˆ

N

X

)

�1
(y). (4)

1Later, we abuse notation and switch freely between treating Gk as a matrix and a relation. When it is a
matrix, Gkx denotes matrix-vector multiplication that produces a vector. When it is a relation, Gk(x) produces
the singleton {Gkx}.

3

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Safe Robot Learning with PNAC

UBot, Laboratory of Perceptual Robotics

Our new method

Previous
method

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Proximal Reinforcement Learning: A New Theory of Sequential
Decision Making in Primal-Dual Spaces,

Arxiv, May 26, 2014 (126 pages)

Sridhar Mahadevan, Bo Liu, Philip Thomas, Will Dabney,
Stephen Giguere, Nicholas Jacek, Ian Gemp, Ji Liu

Ongoing Work

❖ New saddle-point formulation of gradient TD networks

❖ Convergence rate and finite sample analysis

❖ New scalable algorithms

❖ Applications

❖ Integrating deep learning and gradient TD networks

❖ Language models and transfer learning

