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So, what brings you to Edmonton?

–M. Littman
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Example: white-nose syndrome

I Recent headlines
I Fungus that’s killing millions of bats isn’t going away

-Los Angeles Times, Nov. 1, 2013

I The secret bataclysm: white nose syndrome and extinction
-Wired, Aug. 12, 2014

I White-nose syndrome has almost completely wiped out some
North American bat colonies
-Science, Feb. 15, 2015
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Example: white-nose syndrome cont’d

Year Infected
2006−2007

2007−2008

2008−2009

2009−2010

2010−2011

2011−2012

2012−2013

2013−2014

I Allocation strategy: map from current epidemic status to
subset of counties marked ‘high priority for treatment’
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Additional motivating examples

I Other spatio-temporal allocation problems:

I Spread of human disease (e.g., Ebola)

I Wildlife management: allocating catch-sizes in each county

I Adaptive conservation

I Forest fires: where and when to do controlled burns

I Crime prevention: assigning police officers to locations, i.e.,
‘cops on dots’

I Precision agriculture: adaptively adjust nutrients over space
and time
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Major challenges

I Data

I No data on intervention effectiveness at t = 1

I Noisy, incomplete, and sparse state measurements

I High-dimensional, e.g., in WNS, L = 1, 137 locations x 10
measurements per location = 11,370 measurements per time
point

I Estimation and inference

I Online estimation means allocations are selected from a
continually changing (data-dependent) strategy ⇒ sampling
distns are complex

I Computation

I There are 2L possible allocations at each time point

I Enumeration is not possible
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Setup and notation

I Allocation problem evolves over

I Locations L = {1, 2, . . . , L}
I Time points T = {1, 2, . . .}

I At each time t and location `

I Observe state S t
` ∈ Rp

I Observe outcome Y t
` ∈ R (higher is better)

I Select allocation At
` ∈ {0, 1}

I Define S t =
{
S t
`

}
`∈L, At = {At

`}`∈L, and Y t = {Y t
` }`∈L

I Assume allocation based on S t at time t
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Stochastic allocation strategy

I Random allocations needed to learn in online setting

I Let BL denote all distributions over {0, 1}L and S = domS t

I Allocation strategy π is a map

π : S → BL,

under π, a decision maker presented with S t = st will select
at with probability π(at ; st)

7 / 23



Class of potential strategies

I Focus on estimation within class of strategies Π

I Enforce feasibility and cost constraints

I Add’l considerations: parsimony, interpretability, and scalability

I Ex. probit rank model

Πex. = {πρ,σ(a; s) ∝ Φ {ψ(s, a; ρ)/σ} , ρ ∈ Rp, σ ∈ R+} ,

where ψ(s, a; ρ) is a feature vector indexed by ρ ∈ Rp, and Φ
is the CDF of a standard normal random variable
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Optimal strategy via potential outcomes

I Define F =
{
a ∈ {0, 1}L : a ∈ domπ for some π ∈ Π

}
I Potential outcomes under at = (a1, . . . , at)

W =
{
Y ∗t(at),S∗(t+1)(at) : at ∈ F

}
t∈T

I Potential outcome under strategy π

Y ∗t(π) =
∑
at

Y ∗t(at)
t∏

v=1

I
[
ξvπ
{
S∗v (av−1)

}
= av

]
,

where {ξtπ(s)}t∈T , s∈S collection independent r.v.s with
P {ξvπ(sv ) = av} = π(av ; sv )
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Optimal strategy via potential outcomes cont’d

I Discounted marginal mean outcome under π is

V (π) = E

[∑
t∈T

γt−1u
{
Y ∗t(π)

}]
,

where γ ∈ (0, 1) and u(·) a utility fn

I Optimal strategy satisfies V (πopt) ≥ V (π) for all π
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Optimal strategy via generative model

I Let H t be history at time t

I Standard assumptions:

(A1) Sequential ignorability: At ⊥⊥W | H t

(A2) Consistency: Y t = Y ∗t(A
t
), S t = S∗t(A

t
)

(A3) Positivity: there exists ε > 0 s.t. P
{
At = a | H t

}
≥ ε with

probability one for all a ∈ F

Spillover effects due to spatial proximity violate SUTVA ⇒
experimental unit is the entire collection of locations L
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Optimal strategy via generative model cont’d

I Under (A1)-(A3), E
[
u
{
Y ∗t(π)

}]
is

∫
u(y t)

t∏
v=1

[
fv (y v | hv , av )π(av ; sv )gv

(
hv | hv−1

)]
dλ(y t , at ,h

t
),

where fv is cond’l density of Y v , gv is cond’l density of Hv

I One observation per time point ⇒ cannot identify fv , gv
I Even if fv ≡ f and gv ≡ g nonparametric estimation is essentially

impossible because at ∈ {0, 1}L

I Need assumptions that allow pooling over locations
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Parametric estimation

I Assume Markovian, low-dimensional parametric models for
systems dynamics

I Conditional density for outcome
fv (y v | hv , av ) = f (y v | sv , av ;β)

I Conditional density for state

gv
(
sv | hv−1

)
= g(sv | sv−1, av−1; θ)

I Use simulation-optimization to estimate πopt

(S1) Constructed estimators β̂, θ̂ of β, θ

(S2) Draw β̃, θ̃ from sampling distn of β̂, θ̂

(S3) Simulate process under β̃, θ̃ to form estimator V̂ (π) of V (π)

(S4) Stochastic programming to compute π̂ = arg maxπ∈Π V̂ (π)
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Online parametric estimation

Maximum
likelihood

Simulation
optimization

β̃, θ̃

Draw A ∼ π̂

π̂

Observe S

Note: this is Thompson sampling.
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Parametric estimation discussion

I Positives

I Intuitive

I Leverage existing scientific theory

I Low variance, applies in data impoverished setting

I Nested parametric models can be used for hypothesis testing,
e.g., is a disease spread diffusive

I Extensions to non-stationary setting via state-space models

I Drawbacks: the devil is in the details

I Potentially high bias

I Computation is non-trivial, requires climbing up-hill in the
strategy space Π using stochastic programming

I Choosing expressive but scalable Π difficult
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One-step solution improvement

I Define ν(s, π) , E
[∑

t≥1 γ
t−1u

{
Y ∗t(π)

} ∣∣S1 = s
]

I Optimal regime, πopt, satisfies

πopt(s) = arg max
at∈A(s)

E
{
u(Y t) + γν(S t+1, πopt)

∣∣S t = s,At = at
}

I One-step estimator

π̃t(s) = arg max
at∈Aπ̂t (s)

Ê
{
u(Y t) + γν̂(S t+1, π̂)

∣∣S t = s,At = at
}
,

where Ê and ν̂ estimated via Monte Carlo
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Simulation experiments: overview

I Simulate spread of disease across nodes in a network

I Randomly select 1% of nodes to infect at baseline

I No interventions for 6 time steps

I Select 6% of nodes for treatment at t = 7, . . . , 15

I Generative model built from white-nose syndrome data

I Variant of gravity model (Maher et al., 2012), probability that
node i infects node j is linear on logit scale

I Coefficients estimated using white-nose data then scaled s.t.
spread to 70% of the network at t = 15 under no treatment

I Additional initial state values at each node generated from
Normal(010, I10)

I Goal: minimize number infected nodes at t = 15
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Simulation experiments: setup

I Competing allocation strategies

I NoTxt: no treatment

I Myopic: allocate to nodes with highest predicted probability of
infection at next time point

I Proximal: ad hoc strategy proposed by USFWS that treats
locations on the ‘border’ of a spreading infection

I SimOpt: simulation optimization with perturbed linear ranks

I OneStep: one-step updated estimator

I Consider correct and incorrect dynamics models

I Correct: time-dependent SI model (Maher et al., 2012)

I Incorrect: estimated dynamics only depend on distance

I Use probit rank class of strategies with linear features
constructed from postulated dynamics model
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Simulation: scale-free example
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Correctly specified dynamics model
Nodes NoTxt Myopic Proximal SimOpt OneStep

100 0.70 0.64 0.56 0.51 0.50
500 0.70 0.61 0.62 0.47 0.47

1000 0.70 0.63 0.64 0.52 0.52

Incorrectly specified dynamics model
Nodes NoTxt Myopic Proximal SimOpt OneStep

100 0.70 0.65 0.56 0.52 0.50
500 0.70 0.63 0.62 0.53 0.52

1000 0.70 0.66 0.64 0.55 0.55
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Simulation: random 3-nearest neighbors example
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Correctly specified dynamics model
Nodes NoTxt Myopic Proximal SimOpt OneStep

100 0.70 0.36 0.31 0.27 0.27
500 0.70 0.45 0.37 0.31 0.30

1000 0.70 0.53 0.48 0.46 0.46

Incorrectly specified dynamics model
Nodes NoTxt Myopic Proximal SimOpt OneStep

100 0.70 0.45 0.31 0.41 0.29
500 0.70 0.55 0.37 0.45 0.32

1000 0.70 0.58 0.48 0.54 0.46
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Simulation: white-nose syndrome

Year Infected
2006−2007

2007−2008

2008−2009

2009−2010

2010−2011

2011−2012

2012−2013

2013−2014

Correctly specified dynamics model
Nodes NoTxt Myopic Proximal SimOpt OneStep

1137 0.60 0.40 0.45 0.30 0.33

Incorrectly specified dynamics model
Nodes NoTxt Myopic Proximal SimOpt OneStep

1137 0.60 0.54 0.45 0.49 0.36
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Discussion

I Management of epidemics can be posed as spatio-temporal
allocation problems

I An effective allocation strategy:

I Accounts for spillover effects (no SUTVA)

I Implemented online

I Computationally feasible

I Accommodates evolving logistical constraints

I We proposed a parametric, model-based estimator
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Discussion cont’d

I Many open and exciting problems

I Imperfect measurement/detection

I Scaling to networks with millions or billions of nodes (we
currently have heuristics that apply to ∼10 million nodes)

I Semi-parametric and non-parametric estimation

I Choose amount of stochasticity in allocation strategy to
optimize exploration/exploitation trade-off
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Simulation: white-nose syndrome

I Build systems dynamics model using data from 2006-2012

I Use linear strategies π(s; γ) = arg maxa∈At φ(s, a)ᵀ(γ + ξ)

I Spatio-temporal gravity model, Y t
` , infectious status

P
(
Y t
` = 0

∣∣H t ,At
)

=

{
0 Y t−1

` = 1∏
j∈It−1(1− ptj`) Y t−1

` = 0,

where It is the set of infected counties at time t, ptj` is prob.
of spread from j to ` at time t



Simulation: white-nose syndrome cont’d

I Probability of spread from j to ` at time t

logit
(
ptj`
)

= βᵀX t
j + αAt

` −
ρdj`

(mjm`)ν
,

where:
I X

ᵀ
j are covariates and β unknown coeffs

I At
j indicates treatment, α treatment effect

I Final term controls spatial dependence

I dj` distance between j and `

I mj nbr caves in j

I ρ and ν unknown parameters

I See Maher et al. (2012) for details



Simulation: white-nose syndrome cont’d

I Simulation procedure:

1. Simulate data from estimated model, no treatments in
2006-2012

2. Use ad hoc proximity-based strategy to choose locations in
2012

3. Start estimating optimal strategy in 2013

4. Run through 2021

I Restrict number of treated counties to 60 at each time point

I Compare with proximity-based strategy and myopic
prediction-based strategy



Simulation: white-nose syndrome results
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Simulation: white-nose syndrome discussion

I Online anchored estimation performs favorably with
competing strategies

I Computational burden is significant information in plot took
approximately 20 hours on 64 cores to construct

I Class of policies has major impact on
complexity/performance, we are currently working on this



Example two: ebola virus disease
I Recent headlines

I In West Africa, disease just as devastating as war
–Globe and Mail, Nov. 26, 2014

I Despite Aid Push, Ebola Is Raging in Sierra Leone
–New York Times, Nov. 27, 2014

I Global Ebola Death Toll Exceeds 5,600
–Wall Street Journal, Nov. 26, 2014

I Ebola Fight Far From Over
–Global Times, Nov. 27, 2014

Ebola virion image from CDC PHIL, plane image and burial worker images from AP photo



Example two: ebola virus disease cont’d
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Example two: ebola virus disease cont’d

I Goal: minimize number infected individuals

I Impact

I Thousands of human lives

I World bank estimated cost of management at 33 billion USD

I Political and economic stability

I Potential interventions

I Quarantine protocols / movement limitations / border closings

I Vaccination*

I Allocation strategy: map from current epidemic status to
subset of locations for mobile treatment units



Simulation: Ebola

I Build systems dynamics model using data from last 157 days

I Model currently under development, but similar to
spatio-temporal gravity model

I Population density

I Population movements (historical)

I Simulate 14 weeks of treatment

I Apply treatments weekly

I Restrict number of treated locations

I Compare with proximity-based and myopic strategies

I Use linear strategies



Simulation: Ebola results
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Simulation: Ebola discussion

I No difference between ad hoc and anchored strategies

I Spread model very coarse, more data are coming

I Small number of locations, more expressive strategies are
possible


