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Utility estimation by importance sampling
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with activation function the network
learns to perform utility-weighted sampling.
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Model fitting

Maximum-Likelihood-Estimation of
from block-by-block choice frequencies in
Experiments 1-4 by Ludvig et al. (2014).

A single set of parameters fits all experiments.
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Biased Beliefs Predict Risk Seeking
rUWS =  +0.23 rUWS = -0.44
rpeople= +0.16; p<0.05 rpeople = -0.48; p< 0.05

Judged Freq. of High Gain (%) Judged Freq. of Large Loss (%)
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1. Utility-weighted sampling provides a unifying explanation 

for biases in memory, judgment, and decision making.
2. Utility-weighted sampling can emerge from reward-

modulated associative learning.
3. People overweight extreme events, because it is rational 

to focus on the most important eventualities.
4. Some cognitive biases may serve or reflect the rational 

allocation of finite cognitive resources.
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