

NEUROECONOMICS LABORATORY

Utility-weighted sampling in decisions from experience

Falk Lieder, Tom Griffiths, Ming Hsu UC Berkeley

Take action $\underset{a}{\operatorname{argmax}} \mathbf{E}_{p(O|a)} \begin{bmatrix} u(O) \end{bmatrix}$ $a \operatorname{expected}_{value}$

Take action $\underset{a}{\operatorname{argmax}} \mathbf{E}_{p(O|a)} \begin{bmatrix} u(O) \end{bmatrix}$ $a \operatorname{expected}_{value}$

 $\Box p(o|a) \cdot u(o) do$

Take action $\underset{a}{\operatorname{argmax}} \mathbf{E}_{p(O|a)} \begin{bmatrix} U(O) \end{bmatrix}$ expected value

 $p(o|a) \cdot u(o) do$

Intractable!

Intractable!

$EU = \Box p(o \mid a) \cdot u(o) \ do$

$EU = \Box p(o \mid a) \cdot u(o) \ do$

$$o_1, \cdots, o_s \sim p(o \mid a)$$

simulated outcomes

$EU = \Box p(o \mid a) \cdot u(o) \ do$

$$o_1, \cdots, o_s \sim p(o \mid a)$$

simulated outcomes

$$\rightarrow EU \text{ estimates}$$
$$\hat{U}(a) = \frac{1}{s} \bigcup_{i=1}^{s} U(O_s)$$

$EU = \Box p(o \mid a) \cdot u(o) \ do$

$EU = \Box p(o \mid a) \cdot u(o) do$

finite time
finitely many simulated outcomes

bias

Which distribution should the brain sample from?

Answer: Utility-Weighted Sampling (UWS)

probability $\tilde{q}(o) \propto p(o) \cdot |u(o)|$

simulation frequency

extremity

Answer: Utility-Weighted Sampling (UWS)

probability $\tilde{q}(o) \propto p(o) \cdot |u(o)|$

simulation frequency

extremity

Lieder, Hsu, Griffiths (2014)

Decisions from Experience (Ludvig, et al., 2014)

Decisions from Experience (Ludvig, et al., 2014)

Decisions from Experience (Ludvig, et al., 2014)

Decisions from Experience (Ludvig, et al., 2008)

Decisions from Experience (Ludvig, et al., 2008)

Decisions from Experience (Ludvig, et al., 2008)

Inconsistent Risk Preferences Emerge from Learning

Actions:

Actions:

Learning Rule Convergences to Utility-Weighted Sampling

Utility-weighted learning converges to

 $W_{a,o} \propto p(O \mid a) \cdot |U(O)|$ with U(O) = PE(O)

Learning Rule Convergences to Utility-Weighted Sampling

Utility-weighted learning converges to

$$W_{a,o} \propto p(0|a) \cdot |u(0)|$$
 with $u(0) = PE(0)$

with activation function $P(Y=1) \propto \mathbf{w}^t \cdot \mathbf{x}$ the network learns to perform utility-weighted sampling.

Efficient coding (Summerfield & Tsetsos, 2015)

$$|\operatorname{PE}(\boldsymbol{O}_t)| = |\boldsymbol{r}(\boldsymbol{O}_t) - \overline{\boldsymbol{r}}_t|$$

Efficient coding (Summerfield & Tsetsos, 2015)

 $|\operatorname{PE}(o_t)| = |r(o_t) - \overline{r_t}|$ $\overline{r_{t}} = \overline{r_{t-1}} + \eta \cdot (r_t - \overline{r_{t-1}})$

Efficient coding (Summerfield & Tsetsos, 2015)

Model fitting

Maximum-Likelihood-Estimation of $s_{\alpha,\gamma,\lambda}$, and σ_{ε}^{2} from block-by-block choice frequencies in Experiments 1-4 by Ludvig et al. (2014).

A single set of parameters fits all experiments.

UWS captures that people learn to overweight extreme outcomes

UWS captures that people learn to overweight extreme outcomes

Utility-Weighted Sampling Captures Memory Biases (Madan et al. 2014)

Which outcome comes to mind first?

Utility-Weighted Sampling Captures Memory Biases (Madan et al. 2014)

Which outcome comes to mind first?

Utility-Weighted Sampling Captures Memory Biases (Madan et al. 2014)

Which outcome comes to mind first?

Utility-Weighted Sampling Captures Frequency Estimation Bias (Madan et al. 2014)

How often did this door lead to each outcome?

Utility-Weighted Sampling Captures Frequency Estimation Bias (Madan et al. 2014)

How often did this door lead to each outcome?

Utility-Weighted Sampling Captures Frequency Estimation Bias (Madan et al. 2014)

How often did this door lead to each outcome?

r_{people}= +0.16; *p*<0.05

 $r_{UWS} = +0.23$ $r_{people} = +0.16; p < 0.05$

 $r_{UWS} = +0.23$ $r_{people} = +0.16; p < 0.05$

r_{people} = -0.48; *p*< 0.05

Judged Freq. of Large Loss (%)

 $r_{UWS} = +0.23$ $r_{people} = +0.16; p < 0.05$

 $r_{UWS} = -0.44$ $r_{people} = -0.48; p < 0.05$

Judged Freq. of Large Loss (%)

1. Utility-weighted sampling provides a unifying explanation for biases in memory, judgment, and decision making.

- 1. Utility-weighted sampling provides a unifying explanation for biases in memory, judgment, and decision making.
- 2. Utility-weighted sampling can emerge from rewardmodulated associative learning.

- 1. Utility-weighted sampling provides a unifying explanation for biases in memory, judgment, and decision making.
- 2. Utility-weighted sampling can emerge from rewardmodulated associative learning.
- 3. People overweight extreme events, because it is rational to focus on the most important eventualities.

- 1. Utility-weighted sampling provides a unifying explanation for biases in memory, judgment, and decision making.
- 2. Utility-weighted sampling can emerge from rewardmodulated associative learning.
- 3. People overweight extreme events, because it is rational to focus on the most important eventualities.
- 4. Some cognitive biases may serve or reflect the rational allocation of finite cognitive resources.

Poster T28

Thank you!

This work was supported by grant number N00014-13-1-0341 from the Office of Naval Research to Thomas L. Griffiths, grant number RO1 MH098023 from the National Institutes of Health to Ming Hsu, and a Berkeley Graduate Fellowship to Falk Lieder.

We thank Elliot Ludvig, Quentin Huys, and Mike Pacer for their suggestions and feedback.