# THE FORMATION OF HABITS The implicit supervision of the basal ganglia MEROPI TOPALIDOU 

RLDM 2015<br>Edmonton<br>June 08, 2015

## Don't press this button!



## Goal-Directed Actions <br> Habits


$\rightarrow$ behavior adjusts to reflect the new value of the outcome that the action would obtain

$\rightarrow$ habits persist even if the reward becomes less attractive or there is no reward at all.

## Basal Ganglia



## Cortex

## Basal Ganglia

Goal Directed actions


Habits go there

Cortex leads
 learning phase

## Outline

- Experiment
- Computational model
- Results


## Experimental setup

Two monkeys, simple two-armed bandit task with $\mathrm{P}=0.75$ and $\mathrm{P}=0.25$.
$\rightarrow$ Habitual condition (known stimuli pair, same every day)
$\rightarrow$ Novel condition (unfamiliar stimuli pair, new every day)


## Experimental results



## Experimental results

Muscimol injection in GPi disrupts learning in novel conditions (NC) but performances remains intact (but slower) in habitual conditions (HC).



## Experimental conclusion

If habits were stored in basal ganglia, monkeys would not achieve peak performances in muscimol conditions for familiar stimuli.

If habits were learned in cortex, monkeys would be able to reach peak performances in muscimol conditions for unfamiliar stimuli.


## Neural Network

## Computational model

Two segregated loops:
$\rightarrow$ Cognitive loop allows to choose a shape
$\rightarrow$ Motor loop allows to reach a shape

Cognitive decision has to intervene in motor decision.

Neuron Rate model

$$
\tau \frac{d m}{d t}=-m+I_{s}-T
$$



## Cortico-basal competition

Thanks to lateral competition, cortex can make a decision without interaction with BG.


## Cortical decision



## Cortico-Basal decision



## Acting is learning

Learning occurs at three different places simultaneously.
(1) Hebbian learning
(2) Reinforcement learning

Cortex learns to reproduce previous repertories, regardless of whether are appropriate or not (HL).

Fast basal ganglia trial-and-error learning (RL) biases slow cortical one $(\mathrm{HL})$ ensuring that the correct behavior is produced.

$$
\begin{aligned}
\tau \frac{d V}{d t} & =-V+I_{e x t}+I_{\text {syn }}, U=f(V) \\
I_{s y n}^{A \rightarrow B} & =\operatorname{gain} \sum \times W_{A \rightarrow B} \times U_{A}
\end{aligned}
$$

Hebbian (1) : $\Delta W_{A \rightarrow B}=U_{A} \times U_{B} \times\left(W_{A \rightarrow B}-W_{\min }\right) \times\left(W_{\max }-W_{A \rightarrow B}\right)$ Reinforcement (2) : $\Delta W_{A \rightarrow B}=\alpha \times P E \times U_{B}$

$$
P E=\text { Reward }-V_{i}
$$



Barto (1995), Hélie et al. (2014), Topalidou et al. (in prep.)

## Computational results

## Intact model

$\rightarrow$ peak performances on familiar conditions
$\rightarrow$ can learn novel conditions

Lesioned model (GPi)
$\rightarrow$ peak performances on familiar conditions
$\rightarrow$ cannot learn novel conditions

(Model results)

(Monkey results)


## Sensitivity to reward devaluation




## Conclusion

Piron experiment sheds light on the nature of the interaction between the basal ganglia and the cortex and their respective role in the initial formation and the later expression of habits.

The model suggests that the basal ganglia implicitly supervises the learning in cortex where habits are actually stored, but the cortex cannot learn them on its own.

In the future, add more neurons per population, more complex motor cortex in order to include motor skill learning and test the model in a robot through Piron experiment and more complex tasks.


## Acknowledgments

- N. Rougier
- Th. Boraud
- C. Piron
- D. Kase
- A. Leblois


DO NOT PRESS

For more details: Poster M23

