

Three Dimensional Binary Edge Feature Representation for Pain Expression Analysis

Xing Zhang¹, Lijun Yin¹, Jeffrey F. Cohn² ¹State University of New York at Binghamton; ²University of Pittsburgh

Outline

- Background
- Feature Descriptor: 3D-BE
- Feature Evaluation
- Target Action Unit Selection
- Pain Detection Experiment and Evaluation
- Conclusion

Background

• Traditionally, pain assessment relies on subjective rating scales.

Background

• Previous work

 G. Littlewort, M. Bartlett, et al. "Faces of pain: automated measurement of spontaneous all facial expressions of genuine and posed pain." ACM ICMI 2007

 – P. Lucey, J. F. Cohn, et al. "Automatically detecting pain using facial actions." ACII 2009

Background

- Limitation of 2D image based pain assessment
 - Sensitive to head motion, illumination change
 - Missing important depth information
 - Not investigating the temporal evidence
- What can we get from the dynamic 3D pain sequence?
 - A natural representation of human face to explore new features
 - Learning from the temporal information to detect pain in un-segmented sequence

Proposed Approach

Pain Intensity Evaluation

•Sketch is descriptive to carry expression information.

NON-PHOTOREALISTIC RENDERING OF BP4D-Spon

PORTRAIT D'HENRI MARTIN, PABLO PICASSO

• A close look at the 3D edge

 $N_1 \bullet N_2 = |N_1| |N_2| \cos \alpha < 0$

• Normal map based rendering

• An optimal threshold **t** is chosen based on the edge decreasing speed.

 Based on three expression invariant feature points, we register the face and get the feature region.

$$V = [p_{1}, p_{2}, \dots, p_{n}], p_{i} = c_{i} / \sum_{i=1}^{n} c_{i}$$

Feature Evaluation

Method	3D-based Features			2D-based Features		
\	3D-BE	Shape	Nebular	LBP-TOP	LBP-TOP	Gabor
AU		Index		Depth	texture	texture
1	64.6	53.2	54.1	52.4	57.9	61.0
2	57.1	59.4	63.0	55.9	59.2	60.8
4	66.5	61.6	58.7	51.1	53.3	58.6
6	69.0	70.4	67.6	61.3	64.8	67.6
7	64.5	64.1	58.9	52.4	55.4	64.4
10	68.7	68.0	66.4	56.9	62.1	70.5
12	75.2	75.2	57.3	53.3	59.1	74.5
14	55.9	53.5	54.5	52.8	52.3	52.8
15	66.2	65.1	66.0	63.1	64.5	60.9
17	64.2	59.2	61.8	53.3	60.0	62.2
23	63.6	50.9	60.6	59.3	58.5	61.7
24	75.9	67.9	63.3	62.9	63.4	72.1
Avg.	66.0	62.3	61.3	56.2	59.2	63.9

Target Action Units Selection

- Prkachin and Solomon selected pain related AU set including: AU4, 6, 7, 9, 10, 12, 20, 25, 26, 27 and 43 [PRKACHIN et al. 2008].
- They define the pain intensity scale (PSPI) as
 Pain = AU4 + (AU6 | AU7) + (AU9 | AU10) + AU43
- BP4D-Spontaneous database code 34 AUs for pain activity of 41 subjects [ZHANG, Yin, Cohn, et al. 2013].
- We start from the intersection of the two:
 AU4, 6, 7, 9, 10, 12, 20, and 27.

Target Action Units Selection

Target Action Units Selection

Task	Нарру	Sad	Startled	Embarrass	Fear	Upset	Disgust
AU set							
4, 6, 7, 9, 10	0.0257	0.0196	0.0014	0.0005	0.0013	0.2346*	0.0331
4, (6&7), (9&10)	0.6041*	0.2754*	0.0012	0.2113	0.8187*	0.0245	0.0343
4, 6, 7, 10,12	0.0042	0.0067	0.0019	0.0004	0.0007	0.0992*	0.0290
4, (6&7), (10&12)	0.0052	0.0546*	0.0040	7.0879x10 ⁻⁶	0.0125	0.3507*	0.0227
4, (6&7), 9, (10&12)	0.0074	0.0475	0.0034	9.7693x10 ⁻⁶	0.0156	0.3951*	0.0120
5&7), 9, (10&12)	0.0003	1.0536x10 ⁻⁸	0.0032	1.3646x10 ⁻⁷	8.1435x10 ⁻⁵	0.0307	0.0043

Pain Detection Experiment and

Evaluation

- Three classification models:
 - AdaBoost [VIOLA, JONES 2002]
 - Support Vector Machine (SVM) [LITTLEWORT, et al. 2007]
 - Latent-Dynamic Conditional Random Field (LDCRF) [MORENCY, et al. 2007]
- Methodology
 - 10-fold cross validation for the classifier parameters
 - Positive and negative data from two tasks (pain and no-pain)

Experiment and Evaluation

Pain Detection Experiment and Evaluation

- We evaluate the consistency of log-likelihood from the classifier (LDCRF) with the intensity coding on AU6, 10, and 12.
- Different mapping functions may apply to the raw likelihood , and the result is divided into 5 isometric bins.

Туре	Linear r	napping	6-th power mapping		
AU \	MEAN	STD	MEAN	STD	
6	1.949	0.998	1.312	0.924	
10	1.678	0.959	1.243	0.842	
12	2.130	1.053	1.436	1.033	

Pain Detection Experiment and Evaluation

• Pain intensity detection

Expression-based Pain Analysis Experiment on Pain Sequence

Conclusion

- A newly developed binary edge feature for 3D face model is introduced.
- An Action Units set has been found as a good indicator of genuine pain expression.
- LDCRF fits this un-segmented sequence classification.
- The classification result can be used to indicate the pain intensity.

Future Work

- Pain analysis based on different modality data.
- Investigate AU sets correlated to the other expressions.
- Apply the 3D-BE feature to RGB-D image stream for patient monitoring application.

ACKNOWLEDGMENT

This material is based upon the work supported in part by the National Science Foundation under grants IIS-1051103, IIS-1051169, CNS-1205664, and CNS-1205195.

Thanks to Jeffrey Girard, Dean Rosenwald, Shawn Zuratovic, and Nicki Siverling for collaboration and FACS coding.

Thank you!

