

11th IEEE International Conference on Automatic Face and Gesture Recognition

Leveraging Geometry and Appearance Cues for Recognizing Family Photos

Xiaolong Wang, Guodong Guo*, Rohith MV and Chandra Kambhamettu VIMs Lab, University of Delaware, Newark, USA *West Virginia University, USA

Problem description

Problem description

Is it possible?

Related work

• Chen et al. Discovering Informative Social Subgraphs and Predicting Pairwise Relationships from Group Photo, MM, 2012.

Related work

• Chen et al. Discovering Informative Social Subgraphs and Predicting Pairwise Relationships from Group Photo, MM, 2012.

Cues

Geometry

Appearance

Cues

1. Convex Hull is used as the basis to represent the geometry of people position.

$$\{\sum_{i=1}^{n} a_{i} s_{i} \mid (\forall i : a_{i} \ge 0) \land \sum_{i=1}^{n} a_{i} = 1\}$$

1. Convex Hull is used as the basis to represent the geometry of people position.

$$\{\sum_{i=1}^{n} a_{i} s_{i} \mid (\forall i : a_{i} \ge 0) \land \sum_{i=1}^{n} a_{i} = 1\}$$

2. Incorporating all the vertices

2. Incorporating all the vertices

$$d = \sqrt{(u_i - x_{ai})^2 + (v_i - y_{ai})^2}$$

2. Incorporating all the vertices

$$d = \sqrt{(u_i - x_{ai})^2 + (v_i - y_{ai})^2}$$

• Pairwise Feature (PF) Extraction

- Pairwise Feature (PF) Extraction
- Facial Codebook Construction

- Pairwise Feature (PF) Extraction
- Facial Codebook Construction
- Formulation of DOGF Feature

Pairwise Feature (PF) Extraction

$$PF = \{ \overrightarrow{H}_{re}, \overrightarrow{H}_{le}, \overrightarrow{H}_{nose}, \overrightarrow{H}_{mouth} \}$$

Facial Codebook Construction

DOGF feature extraction

$$\overrightarrow{d}_{j} = [d_{1}, d_{2}]$$
 $\overrightarrow{F} = \frac{1}{J} \sum_{j=1}^{J} \overrightarrow{d}_{j} \qquad J:$

J: Number of facial pairs

Model Fusion

Score level fusion

$$R_{c}(x, y) = \sum_{m} w_{m} e^{-\frac{||x-y||^{2}}{2\sigma_{m}^{2}}}$$

 $W_m\,$ can be set a priori or via cross-validation.

 W_m is set using cross-validation.

Dataset:

	Family photos	Non-Family photos
Dataset One [Chen et al. MM 2012]	1167	1263
Dataset Two (New)	1420	1420

Note:

- 1. Dataset One is used in [Chen et al. MM 2012].
- 2. 16818 individuals are included in Dataset Two.
- 3. All photos used in our experiment contain at least three individuals.
- 4. Five-fold cross- validation.

Correctly-classified samples using geometry model only

Family Photo

Non-Family Photo

Misclassified samples using geometry model

Family Photo

Non-Family Photo

Correctly-classified samples using appearance model

Family Photo

Non-Family Photo

Misclassified samples using geometry model and correctly classified after fusion

Family

Method	Dataset One	Dataset Two
Chen et al [MM 12]	90.03%	
Geometry (Ours)	86.4%	87.3%
Appearance (Ours)	89.4%	89.0%
Fusion (Ours)	93.9%	93.4%

ROC illustration of Dataset One and Two

Experimental Setting:

- 1. Geometry model baseline: the distances calculated from the center to all vertices are used as the feature.
- 2. Appearance model:
 - a. Modified Hausdorff Distance(MHD) vs Hausdorff Distance(HD).
 - b. Using age information vs no-age information.

Bar illustrations of different schemes

Conclusions

- 1. A new global geometry feature is proposed to represent the standing pattern of people in a group photo and we have obtained very promising results.
- 2. Our method demonstrated that fusing geometry with appearance feature is an efficient scheme for recognizing family photos.
- 3. In our future research, we like to explore automatically labeling photos for other groups (such as work colleagues, students, etc)

Thank you !