Active Nonrigid JCP Algorithm

Shiyang Cheng, Ioannis Marras, Stefanos Zafeiriou, Maja Pantic

The Problem

Our goal:

- Accurately fit a 3D facial mesh.
- Model facial expression.

Challenges:

• Complex, non-linear and highly deformable facial structure.

Prior Work

- Deformable fitting using annotated face model (AFM) [1]. We refer it to FEM in our paper.
- Non-rigid Iterative Closest Point (NICP) [2].
- 3D Morphable Model Fitting with ICP [3].

[1] G. Passalis et al. Intraclass retrieval of nonrigid 3D objects: application to face recognition. T-PAMI 2007.

[2] B. Amberg et al. Optimal step nonrigid icp algorithms for surface registration. CVPR 2007.

[3] B. Amberg et al. Expression Invariant 3D Face Recognition with a Morphable Model. FG 2008.

Motivation

□ To better model facial expression

□ To better capture the face parts

[1] G. Passalis et al. Intraclass retrieval of nonrigid 3D objects: application to face recognition. T-PAMI 2007.

Our Pipeline

Our Pipeline

[1] A. Jacobson et al. Bounded biharmonic weights for real-time deformation. SIGGRAPH 2011.[2] I.A. Kakadiaris et al. Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach. T-PAMI 2007.

Our Pipeline

[1] A. Jacobson et al. Bounded biharmonic weights for real-time deformation. SIGGRAPH 2011.[2] I.A. Kakadiaris et al. Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach. T-PAMI 2007.

Dynamic Fitting Procedure

- Coarse-to-fine fitting approach
- Mesh subdivision
 - Loop subdivision.
 - Subdivided mesh captures more facial details.

2nd

Step 3: Fitting

Nonrigid Jterative Closest Point

- V is the vertex in template, U is the vertex from scan, retrieved by closest point matching.
- X contains local affine transforms for each vertex.

[1] B. Amberg et al. Optimal step nonrigid icp algorithms for surface registration. CVPR 2007.

Nonrigid JCP

Distance and stiffness terms:

$$E_d(\mathbf{X}) := \sum_{i=1}^n \|\mathbf{X}_i \mathbf{v}_i - \mathbf{u}_i\|^2$$
$$E_s(\mathbf{X}) = \|(\mathbf{M} \otimes \mathbf{G})\mathbf{X}\|_F^2$$

Cost function :

$$E_X(\mathbf{X}) := \alpha E_s + E_d = \left\| \begin{bmatrix} \alpha \mathbf{M} \otimes \mathbf{G} \\ \mathbf{D} \end{bmatrix} \mathbf{X} - \begin{bmatrix} \mathbf{0} \\ \mathbf{U} \end{bmatrix} \right\|_F^2 = \left\| \mathbf{A} \mathbf{X} - \widetilde{\mathbf{U}} \right\|_F^2$$

Fitting objective:

$$\arg\min_{\mathbf{X}} E_X(\mathbf{X}) = \arg\min_{\mathbf{X}} \left\| \mathbf{A}\mathbf{X} - \widetilde{\mathbf{U}} \right\|_F^2$$

Problem of NJCP

 No hard constraint on template vertex V: can lead to anthropomorphically inconsistent fittings.

• Face configuration can be modelled via statistical shape model.

Distance term:

$$E_d(\mathbf{X}) := \sum_{i=1}^n \|\mathbf{X} \mathbf{v}_i - \mathbf{u}_i\|^2$$

Replaced by a statistical shape model!
 $\mathbf{v}_i = \mathbf{B}_i \mathbf{c}_i + \mathbf{m}_i$

New distance and stiffness terms:

$$E_d(\mathbf{X}, \mathbf{c}) := \sum_{i=1}^n \|\mathbf{X}_i \underline{\widetilde{\mathbf{v}}_i} - \mathbf{u}_i\|^2 = \sum_{i=1}^n \|\mathbf{X}_i (\underline{\mathbf{B}_i \mathbf{c}_i} + \mathbf{m}_i) - \mathbf{u}_i\|^2$$

$$E_s(\mathbf{X}) = \|(\mathbf{M} \otimes \mathbf{G})\mathbf{X}\|_F^2$$

Fitting objective:

$$\arg\min_{\mathbf{X},\mathbf{c}} E(\mathbf{X},\mathbf{c}) = \arg\min_{\mathbf{X},\mathbf{c}} E_d + \alpha E_s$$

New distance and stiffness terms:

$$E_d(\mathbf{X}, \mathbf{c}) := \sum_{i=1}^n \|\mathbf{X}_i \widetilde{\mathbf{v}}_i - \mathbf{u}_i\|^2 = \sum_{i=1}^n \|\mathbf{X}_i \mathbf{B}_i \mathbf{c}_i + \mathbf{m}_i) - \mathbf{u}_i\|^2$$

$$E_s(\mathbf{X}) = \|(\mathbf{M} \otimes \mathbf{G})\mathbf{X}\|_F^2$$
Iocal affine parameters

Fitting objective:

$$\arg\min_{\mathbf{X},\mathbf{c}} E(\mathbf{X},\mathbf{c}) = \arg\min_{\mathbf{X},\mathbf{c}} E_d + \alpha E_s$$

New distance and stiffness terms:

$$E_d(\mathbf{X}, \mathbf{c}) := \sum_{i=1}^n \|\mathbf{X}_i \widetilde{\mathbf{v}}_i - \mathbf{u}_i\|^2 = \sum_{i=1}^n \|\mathbf{X}_i(\mathbf{B}_i \mathbf{c}_i + \mathbf{m}_i) - \mathbf{u}_i\|^2$$

$$E_s(\mathbf{X}) = \|(\mathbf{M} \otimes \mathbf{G})\mathbf{X}\|_F^2$$
local affine parameters

Two objectives:

$$\begin{cases} \arg\min_{\mathbf{X}} E(\mathbf{X}, \mathbf{c}_0) = \arg\min_{\mathbf{X}} E_d + \alpha E_s \\ \arg\min_{\mathbf{c}} E(\mathbf{X}_1, \mathbf{c}) = \arg\min_{\mathbf{c}} E_d \end{cases}$$

Optimize local affine parameters Optimize shape parameters

Alternating Optimization

Active Nonrigid JCP

Individual modelling of face parts

- Manual segmentation of face parts.
- The models are built using BU-3DFE [1] database.
- For each part:

$$\mathbf{v}_i = \mathbf{B}_i \mathbf{c}_i + \mathbf{m}_i$$

Experiments - Mouth Coverage

- 100 scans from different subjects in BU-4DFE [1] with exaggerated expressions.
- Manual annotation of mouth region.

• Accuracy calculated as:
$$S = 1 - \frac{A(D \cap G)}{A(D \cup G)}$$

Method	Mean S value
FEM	0.4086
C2F-NICP	0.3841
C2F-ANICP	0.3688
C2F-NICP-PD	0.2891
C2F-ANICP-PD	0.3058

- **C2F-** : Coarse-to-fine fitting approach.
- **-PD** : Initialization from 2D face alignment.

Experiments - Mouth Coverage

FEM

C2F-NICP-PD

C2F-ANICP-PD

Experiments - FER

- Recognition of six prototypical facial expressions.
- Balanced set consisting of ~6000 instances from BU-4DFE.
- SVM classifier with RBF kernel.
- Histogram of Oriented Normal Vectors (HONV) feature.

Experiments - FER

- Recognition of six prototypical facial expressions.
- Balanced set consisting of ~6000 instances from BU-4DFE.
- SVM classifier with RBF kernel.
- Histogram of Oriented Normal Vectors (HONV) feature.

Method	Main face		Mouth	
	$F_1[\%]$	CR[%]	F ₁ [%]	CR[%]
FEM	75.65	75.87	73.49	73.38
C2F-NICP	76.50	76.74	74.74	75.05
C2F-ANICP	78.22	78.43	76.15	76.57
C2F-NICP-PD	79.24	79.47	78.18	78.13
C2F-ANICP-PD	80.94	81.16	80.44	80.41

Experiments - FER

- Recognition of six prototypical facial expressions.
- Balanced set consisting of ~6000 instances from BU-4DFE.
- SVM classifier with RBF kernel.
- Histogram of Oriented Normal Vectors (HONV) feature.

Method	Main face		Mouth	
	$F_1[\%]$	CR[%]	$F_1[\%]$	CR[%]
FEM	75.65	75.87	73.49	73.38
C2F-NICP	76.50	76.74	74.74	75.05
C2F-ANICP	78.22	78.43	76.15	76.57
C2F-NICP-PD	79.24	79.47	78.18	78.13
C2F-ANICP-PD	80.94	81.16	80.44	80.41

Experiments - FER

- Recognition of six prototypical facial expressions.
- Balanced set consisting of ~6000 instances from BU-4DFE.
- SVM classifier with RBF kernel.
- Histogram of Oriented Normal Vectors (HONV) feature.

Method	Main face		Mouth	
	$F_1[\%]$	CR[%]	F ₁ [%]	CR[%]
FEM	75.65	75.87	73.49	73.38
C2F-NICP	76.50	76.74	74.74	75.05
C2F-ANICP	78.22	78.43	76.15	76.57
C2F-NICP-PD	79.24	79.47	78.18	78.13
C2F-ANICP-PD	80.94	81.16	80.44	80.41

Fitting Examples

Raw scan

FEM

Conclusion

- Our coarse-to-fine fitting procedure is shown capable of modelling facial expression.
- The proposed Active Nonrigid ICP algorithm outperforms state-of-the-art fitting methods, especially in the description and alignment of the mouth region.
- The initialization procedure further increases the performance.

Thank you!