Multi-sensor System for Driver's Hand-Gesture Recognition

Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Kari Pulli

Driver distraction

Current interfaces in cars distract drivers from the road

Driver distraction

(http://www.softkinetic.com)

Touchless interfaces will help keep drivers' attention on the road

Existing work

Neverova et al., ECCV ChaLearn Workshop 2014.

- RGBD and upper body skeletal pose
- Deep neural networks
- Indoors only

Ohn-Bar and Trivedi, *IEEE Trans. ITS* 2014.

- RGBD
- HOG+HOG² and SVM classifier
- In car during day and evening

Our solution

Why multi-sensor?

Day

Color cameras

Why multi-sensor?

Day

Color cameras

No sunlight

Sunlight

Commodity depth cameras

Radar sensor

All lighting conditions:

No interference from the Sun:

Direct measurements of local radial velocities (by Doppler shift):

Radar sensor

- Frequency Modulated Continuous wave (FMCW) radar architecture, 24 GHz
- Our design
- Molchanov et al., *IEEE Radar*, 2015.

Radar can estimate:

- Range with resolution of <u>4 cm</u>
- Radial velocity with resolution <u>0.04 m/s</u>
- Angles of arriving (<u>azimuth</u> and <u>elevation</u>) are estimated for detected objects

Radar sensor

Velocity image

Segmentation

- Performed by radar
- Gesture detected when <u>maximum velocity > threshold</u>
- Assumptions:

Hand stationary between gestures

Gesture duration 0.3 - 3s

Threshold

Power efficiency

- Concept: High power sensors can be switched ON only during gesture detected by radar
- 16x power efficiency

Classification

- Each frame consists of 3 channels: Intensity, Depth and Velocity
- Each channel is down sampled 32x32 pixels

Classification

- Each frame consists of 3 channels: Intensity, Depth and Velocity
- Each channel is down sampled 32x32 pixels
 - Segmented gesture is interpolated to 60 frames

Classification

- Each frame consists of 3 channels: Intensity, Depth and Velocity
- Each channel is down sampled 32x32 pixels
 - Segmented gesture is interpolated to 60 frames

3D convolutional neural network

Data collection

- 10 experiments (sessions)
- 10 gesture types + random gesture
- 10-20 repetitions
- 3 persons
- Set-ups:
 - Indoor simulator
 - Outdoor, parked car
- Lighting conditions:
 - Day, shadow
 - Day, Sun
 - Evening
 - Night

Total 1714 gestures

Indoor car simulator

Outdoor car

Data collection

Gesture classes

Results Leave one session out

D – depth O – optical R - radar

Results Leave one session out

D – depth O – optical R - radar

Results Leave one session out

D – depth O – optical R - radar

Leave one session out: different lighting conditions

Leave one session out: different lighting conditions

^{*}Ohn-Bar and Trivedi, *IEEE Trans. on Intelligent Transportation Systems*, 2014.

Classification error for leave one subject out classification

D+R+O (CNN)	D+O (HOG*)	
24.90%	48.2%	
D – depth	O – optical	R - radar

Solutions:

Use more subjects to train

Perform biometric registration of the system for a new user

^{*}Ohn-Bar and Trivedi, IEEE Trans. on Intelligent Transportat<u>ion Systems, 2014.</u>

Demo Gesture classification in parked car

Conclusions

- A multi-sensor system improves accuracy and robustness to lighting
- CNN combines sensors effectively
- Proposed approach outperforms feature-based SOTA
- Using radar lowers power consumption, allows efficient gesture segmentation, and improves classification accuracy

THANK YOU QUESTIONS?

Demo Gesture classification in simulator

^{*}Ohn-Bar and Trivedi, *IEEE Trans. on Intelligent Transportation Systems*, 2014.

Calibration

Depth and Radar sensors are calibrated assuming a linear transformation model

-1.5m/s

Green circles – points detected by radar Blue point – hand position estimated from the radar