On the Quantitative Analysis of Craniofacial Asymmetry in 3D

F.M. Sukno ${ }^{1}$, M.A, Rojas ${ }^{2,3}$, J.L- Waddington ${ }^{2}$ and P.F. Whelan ${ }^{3}$
${ }^{1}$ Pompeu Fabra University, Barcelona, Spain
${ }^{2}$ Royal College of Surgeons in Ireland, Dublin, Ireland ${ }^{3}$ Dublin City University, Dublin, Ireland

Research context: Craniofacial Dysmorphology

■ Craniofacial geometry has been suggested as an index of early brain dysmorphogenesis in neuropsychiatric disorders

- Down syndrome
- Autism
- Schizophrenia
- Bipolar disorder
- Fetal alcohol syndrome
- Velocardiofacial syndrome
- Cornelia de Large syndrome - ...
- Shape differences can be very subtle
- Need for highly accuracy analysis

The interest in symmetry

■ Wide application scope in computer vision

- Face recognition
- Gender classification
- Landmark detection

■ .. and beyond

- Facial attractiveness, mate selection
- Assessment of orthognatic surgery outcome

■ Developmental dysmorphology

- Autism spectrum disorders
- Schizophrenia
- Fetal alcohol syndrome
- Differences can be very subtle

Measuring bilateral facial symmetry in 3D

What is our accuracy in asymmetry estimation?
■ Shape-based definition

- Difference between left and right hemispheres
- Deviation from nearest symmetric shape
- Estimation of the symmetry plane
- Alignment of original and reflected shapes
- A synthetic motivation example
- Traditional approaches perform poorly
- Landmark- and surface-based discrepancies

■ Quantitative evaluation

- Point-wise 3D measurements of asymmetry
- Comparison to ground-truth asymmetries
- Synthetic patterns of asymmetry
- Starting from a perfectly symmetric face

Claes et al (2011)
Journal of Anatomy

Measuring bilateral facial symmetry in 3D

What is our accuracy in asymmetry estimation?
■ Shape-based definition

- Difference between left and right hemispheres
- Deviation from nearest symmetric shape
- Estimation of the symmetry plane
- Alignment of original and reflected shapes
- A synthetic motivation example
- Traditional approaches perform poorly
- Landmark- and surface-based discrepancies
- Quantitative evaluation
- Point-wise 3D measurements of asymmetry
- Comparison to ground-truth asymmetries
- Synthetic patterns of asymmetry
- Starting from a perfectly symmetric face

Bilateral symmetry: facial hemispheres

Bilateral symmetry: facial hemispheres

Plane of bilateral symmetry

Bilateral symmetry: facial hemispheres

Plane of bilateral symmetry

Bilateral symmetry computation

Original surface S
I. Obtained mirrored surface S_{M}

- Arbitrary plane

2. Put S and S_{M} in correspondence

- Rigid transformation T
- Vertex index reflection

3. Compute asymmetry by point-wise difference between S and the mirrored-aligned S_{M}

$(\cdot)^{\text {ref }}$ Reflection operator: a function that swaps left and right vertex indices

$$
(j)^{r e f}=\bar{j}, \quad(\bar{j})^{r e f}=j
$$

Asymmetry $\sim S-T\left((S M)^{r e f}\right)$

Bilateral symmetry computation

Original surface S
I. Obtained mirrored surface S_{M}

- Arbitrary plane

2. Put S and S_{M} in correspondence

- Rigid transformation T
- Vertex index reflection

3. Compute asymmetry by point-wise difference between S and the mirrored-aligned S_{M}

$(\cdot)^{\text {ref }}$ Reflection operator: a function that swaps left and right vertex indices

$$
(j)^{r e f}=\bar{j}, \quad(\bar{j})^{r e f}=j
$$

Asymmetry $\sim S-T\left((S M)^{r e f}\right)$

A motivating example ... against traditional Procrustes alignment to estimate T

- Let $\mathcal{S}_{\text {symm }}$ be a facial surface that is perfectly symmetric about the plane $x=0$. Thus, symmetric paired
- Let us generate \mathcal{S}_{1} by expanding the left side of $\mathcal{S}_{\text {symm }}$ linearly with respect to the coordinates of the x-axis. If we represent surface $\mathcal{S}_{\text {symm }}$ by a set of n_{V} vertices $\left\{\mathbf{v}_{s}^{i}\right\}_{i=1}^{n_{V}}$ with $\mathbf{v}_{s}^{i}=\left(x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}$ then:

$$
\begin{aligned}
& \forall\left(\mathbf{v}_{s}^{i} \in \mathcal{S}_{s y m m}, \mathbf{v}_{1}^{i} \in \mathcal{S}_{1}\right): \\
& \quad \mathbf{v}_{1}^{i}= \begin{cases}\mathbf{v}_{s}^{i}+\left(\alpha x_{s}^{i}, 0,0\right)^{T} & \text { if } x_{s}^{i}>0 \\
\mathbf{v}_{s}^{i} & \text { otherwise }\end{cases}
\end{aligned}
$$

where α is a constant that controls the degree of expansion.

A motivating example ... against traditional Procrustes alignment to estimate T

- Let $\mathcal{S}_{\text {symm }}$ be a facial surface that is perfectly symmetric about the plane $x=0$. Thus, symmetric paired
- Let us generate \mathcal{S}_{1} by expanding the left side of $\mathcal{S}_{\text {symm }}$ linearly with respect to the coordinates of the x-axis. If we represent surface $\mathcal{S}_{\text {symm }}$ by a set of n_{V} vertices $\left\{\mathbf{v}_{s}^{i}\right\}_{i=1}^{n_{V}}$ with $\mathbf{v}_{s}^{i}=\left(x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}$ then:

$$
\begin{aligned}
& \forall\left(\mathbf{v}_{s}^{i} \in \mathcal{S}_{\text {symm }}, \mathbf{v}_{1}^{i} \in \mathcal{S}_{1}\right): \\
& \mathbf{v}_{1}^{i}= \begin{cases}\left.\mathbf{v}_{s}^{i}+\underline{\left(\alpha x_{s}^{i}, 0,0\right.}\right)^{T} & \text { if } x_{s}^{i}>0 \\
\mathbf{v}_{s}^{i} & \text { otherwise }\end{cases}
\end{aligned}
$$

where α is a constant that controls the degree of expansion.

A motivating example ... against traditional Procrustes alignment to estimate T

- Let us generate \mathcal{S}_{1} by expanding the left side of $\mathcal{S}_{\text {symm }}$ linearly with respect to the coordinates of the x-axis. If we represent surface $\mathcal{S}_{\text {symm }}$ by a set of n_{V} vertices $\left\{\mathbf{v}_{s}^{i}\right\}_{i=1}^{n_{V}}$ with $\mathbf{v}_{s}^{i}=\left(x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}$ then:

$$
\forall\left(\mathbf{v}_{s}^{i} \in \mathcal{S}_{s y m m}, \mathbf{v}_{1}^{i} \in \mathcal{S}_{1}\right):
$$

$$
\mathbf{v}_{1}^{i}= \begin{cases}\mathbf{v}_{s}^{i}+\left(\alpha x_{s}^{i}, 0,0\right)^{T} & \text { if } x_{s}^{i}>0 \\ \mathbf{v}_{s}^{i} & \text { otherwise }\end{cases}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

- Let us generate \mathcal{S}_{1} by expanding the left side of $\mathcal{S}_{s y m m}$ linearly with respect to the coordinates of the x-axis. If we represent surface $\mathcal{S}_{\text {symm }}$ by a set of n_{V} vertices $\left\{\mathbf{v}_{s}^{i}\right\}_{i=1}^{n_{V}}$ with $\mathbf{v}_{s}^{i}=\left(x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}$ then:

$$
\forall\left(\mathbf{v}_{s}^{i} \in \mathcal{S}_{s y m m}, \mathbf{v}_{1}^{i} \in \mathcal{S}_{1}\right):
$$

$$
\mathbf{v}_{1}^{i}= \begin{cases}\mathbf{v}_{s}^{i}+\left(\alpha x_{s}^{i}, 0,0\right)^{T} & \text { if } x_{s}^{i}>0 \\ \mathbf{v}_{s}^{i} & \text { otherwise }\end{cases}
$$

Asymmetry patterns must be themselves symmetric

A motivating example ... against traditional Procrustes alignment to estimate T

- What is the resulting asymmetry pattern?

A motivating example ... against traditional Procrustes alignment to estimate T

- What is the resulting asymmetry pattern?
- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

- What is the resulting asymmetry pattern?
- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

■ What is the resulting asymmetry pattern?

- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}{ }^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

- The asymmetry pattern is then:

$$
\mathcal{A}_{1}=\mathcal{S}_{1}-\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}=\frac{\mathcal{S}_{1}-M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

- What is the resulting asymmetry pattern?
- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

- The asymmetry pattern is then:

$$
\mathcal{A}_{1}=\mathcal{S}_{1}-\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}=\frac{\mathcal{S}_{1}-M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

- In the present example:

$$
\begin{gathered}
\mathbf{v}_{1 s}^{i}= \begin{cases}\frac{1}{2}\left(x_{s}^{i}+\alpha x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}+\frac{1}{2}\left(-x_{s}^{\bar{i}}, y_{s}^{\bar{i}}, z_{s}^{\bar{i}}\right)^{T} & \text { if } x_{s}^{i}>0 \\
\frac{1}{2}\left(x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}+\frac{1}{2}\left(-x_{s}^{\bar{i}}-\alpha x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T} & \text { otherwise }\end{cases} \\
\therefore \mathbf{a}_{1}^{i}= \begin{cases}\left(\frac{\alpha}{2} x_{s}^{i}, 0,0\right)^{T} & \text { if } x_{s}^{i}>0 \\
\left(-\frac{\alpha}{2} x_{s}^{i}, 0,0\right)^{T} & \text { otherwise }\end{cases}
\end{gathered}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

- What is the resulting asymmetry pattern?
- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

- The asymmetry pattern is then:

$$
\mathcal{A}_{1}=\mathcal{S}_{1}-\frac{\mathcal{S}_{1}+M_{x}^{\text {ref }}\left(\mathcal{S}_{1}\right)}{2}=\frac{\mathcal{S}_{1}-M_{x}{ }^{\text {ref }}\left(\mathcal{S}_{1}\right)}{2}
$$

- In the present example:

$$
\begin{gathered}
\mathbf{v}_{1 s}^{i}= \begin{cases}\frac{1}{2}\left(x_{s}^{i}+\alpha x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}+\frac{1}{2}\left(-x_{s}^{\bar{i}}, y_{s}^{\bar{i}}, z_{s}^{\bar{i}}\right)^{T} & \text { if } x_{s}^{i}>0 \\
\frac{1}{2}\left(x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}+\frac{1}{2}\left(-x_{s}^{\bar{i}}-\alpha x_{s}^{\bar{i}}, y_{s}^{\bar{i}}, z_{s}^{\bar{i}}\right)^{T} & \text { otherwise }\end{cases} \\
\therefore \mathbf{a}_{1}^{i}= \begin{cases}\left(\frac{\alpha}{2} x_{s}^{i}, 0,0\right)^{T} & \text { if } x_{s}^{i}>0 \\
\left(-\frac{\alpha}{2} x_{s}^{i}, 0,0\right)^{T} & \text { otherwise }\end{cases}
\end{gathered}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

- What is the resulting asymmetry pattern?
- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

- The asymmetry pattern is then:

$$
\mathcal{A}_{1}=\quad \text { GROUND TRUTH }=\frac{\mathcal{S}_{1}-M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

- In the present example:

$$
\begin{gathered}
\mathbf{v}_{1 s}^{i}= \begin{cases}\frac{1}{2}\left(x_{s}^{i}+\alpha x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}+\frac{1}{2}\left(-x_{s}^{\bar{i}}, y_{s}^{\bar{i}}, z_{s}^{\bar{i}}\right)^{T} & \text { if } x_{s}^{i}>0 \\
\frac{1}{2}\left(x_{s}^{i}, y_{s}^{i}, z_{s}^{i}\right)^{T}+\frac{1}{2}\left(-x_{s}^{\bar{i}}-\alpha x_{s}^{\bar{i}}, y_{s}^{\bar{i}}, z_{s}^{\bar{i}}\right)^{T} & \text { otherwise }\end{cases} \\
\therefore \mathbf{a}_{1}^{i}= \begin{cases}\left(\frac{\alpha}{2} x_{s}^{i}, 0,0\right)^{T} & \text { if } x_{s}^{i}>0 \\
\left(-\frac{\alpha}{2} x_{s}^{i}, 0,0\right)^{T} & \text { otherwise }\end{cases}
\end{gathered}
$$

A motivating example ... against traditional

 Procrustes alignment to estimate T■ What is the resulting asymmetry pattern?

- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}^{\text {ref }}\left(\mathcal{S}_{1}\right)}{2}
$$

- The asymmetry pattern is then:

$$
\mathcal{A}_{1}=\quad \text { GROUND TRUTH }=\frac{\mathcal{S}_{1}-M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

■ How do we automatically estimate asymmetry?

A motivating example ... against traditional Procrustes alignment to estimate T

- What is the resulting asymmetry pattern?
- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

- The asymmetry pattern is then:

$$
\mathcal{A}_{1}=\quad \text { GROUND TRUTH }=\frac{\mathcal{S}_{1}-M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

■ How do we automatically estimate asymmetry?

$$
\hat{\mathcal{A}}_{1}=\frac{\mathcal{S}_{1}-T\left(M_{x}^{r e f}\left(\mathcal{S}_{1}\right)\right)}{2}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

- What is the resulting asymmetry pattern?
- Calculated as the difference w.r.t. the symmetrization of S_{1}, namely the closest symmetric shape to S_{1} :

$$
\mathcal{S}_{1 s}=\frac{\mathcal{S}_{1}+M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$ symmetry plane is at $x=0$

- The asymmetry pattern is then:

$$
\mathcal{A}_{1}=\quad \text { GROUND TRUTH }=\frac{\mathcal{S}_{1}-M_{x}^{r e f}\left(\mathcal{S}_{1}\right)}{2}
$$

\square How do we automatically estimate asymmetry?

$$
\begin{aligned}
& \hat{\mathcal{A}}_{1}=\frac{\mathcal{S}_{1}-T\left(M_{x}^{r e f}\left(\mathcal{S}_{1}\right)\right)}{2} \\
& \underset{\hat{T}}{\arg \min } \sum_{\mathbf{v}_{S}}\left\|\mathbf{v}_{S}-\hat{T}\left(\mathbf{v}_{M}^{r e f}\right)\right\|^{2}, \quad \mathbf{v}_{S} \in \mathcal{S}, \mathbf{v}_{M}^{r e f} \in \mathcal{S}_{M}^{r e f}
\end{aligned}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

■ How do we automatically estimate asymmetry?

$$
\begin{aligned}
& \hat{\mathcal{A}}_{1}=\frac{\mathcal{S}_{1}-T\left(M_{x}^{r e f}\left(\mathcal{S}_{1}\right)\right)}{2} \\
& \underset{\hat{T}}{\arg \min } \sum_{\mathbf{v}_{S}}\left\|\mathbf{v}_{S}-\hat{T}\left(\mathbf{v}_{M}^{r e f}\right)\right\|^{2}, \quad \mathbf{v}_{S} \in \mathcal{S}, \mathbf{v}_{M}^{r e f} \in \mathcal{S}_{M}^{r e f}
\end{aligned}
$$

A motivating example ... against traditional Procrustes alignment to estimate T

■ How do we automatically estimate asymmetry?

$$
\begin{aligned}
& \hat{\mathcal{A}}_{1}=\frac{\mathcal{S}_{1}-T\left(M_{x}^{r e f}\left(\mathcal{S}_{1}\right)\right)}{2} \\
& \underset{\hat{T}}{\arg \min } \sum_{\forall \mathbf{v}_{S}}\left\|\mathbf{v}_{S}-\hat{T}\left(\mathbf{v}_{M}^{r e f}\right)\right\|^{2}, \quad \mathbf{v}_{S} \in \mathcal{S}, \mathbf{v}_{M}^{r e f} \in \mathcal{S}_{M}^{r e f}
\end{aligned}
$$

Asymmetry estimation / Alignment methods

- LMS (Least mean of squares)

$$
\underset{\hat{T}}{\arg \min } \sum_{\forall i}\left\|\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right\|^{2}
$$

■ CW-LMS (Confidence-weighted LMS)

$$
\begin{array}{ll}
\underset{\hat{T}}{\arg \min } \sum_{\forall i} w_{i}\left\|\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right\|^{2} & e_{i}
\end{array}=\left\|\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right\| ~\left(~ \sigma=\sqrt{\frac{\sum_{\forall i} w_{i} e_{i}}{\sum_{\forall i} e_{i}}} \begin{array}{ll}
\text { Gaussian distribution } \mathbf{N}(0, \sigma) \text { for inliers } & \lambda \\
\text { Uniform distribution } \lambda^{-1} \text { for outliers } & =\frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{1}{2} K^{2}\right) \\
\text { Van Leemput et al. İEEE TMI, 20(8), 200I } &
\end{array}\right.
$$

■ LMedS (Least median of squares)
$\underset{\hat{T}}{\arg \min }\left(\operatorname{median}\left\{\left\|\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right\|^{2}\right\}_{i=1}^{n_{V}}\right)$,

Asymmetry estimation / Alignment methods

■ DW-LMedS (Distance-weighted LMedS)

- Symmetry enforcement of the recovered pattern of asymmetry
- Weights decrease with the distance to the mid-line $d_{M L}$

■ Facial asymmetry tends to grow as we depart from the mid-line

$$
\underset{\hat{T}}{\arg \min }\left(\operatorname{median}\left\{\left\|e_{D W}^{i}\right\|^{2}\right\}_{i=1}^{n_{V}}+\sum_{i=1}^{n_{V}} \frac{\left|e_{i}^{2}-e_{i}^{2}\right|}{n_{V}}\right)
$$

Asymmetry estimation / Alignment methods

■ DW-LMedS (Distance-weighted LMedS)

- Symmetry enforcement of the recovered pattern of asymmetry
- Weights decrease with the distance to the mid-line $d_{M L}$

■ Facial asymmetry tends to grow as we depart from the mid-line

$$
\begin{aligned}
& \underset{\hat{T}}{\arg \min }\left(\operatorname{median}\left\{\left\|e_{D W}^{i}\right\|^{2}\right\}_{i=1}^{n_{V}}+\sum_{i=1}^{n_{V}} \frac{\left|e_{i}^{2}-e_{\bar{i}}^{2}\right|}{n_{V}}\right) \\
& e_{D W}^{i}=\exp \left(\frac{-1}{\tau} \frac{d_{M L}\left(\mathbf{v}_{S}^{i}\right)}{\max \left(d_{M L}\left(\mathbf{v}_{S}\right)\right)}\right)\left(\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right) \\
& e_{i}=\left\|\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right\|, \quad e_{\bar{i}}=\left\|\mathbf{v}_{S}^{\bar{i}}-\hat{T}\left(\mathbf{v}_{M}^{i}\right)\right\|
\end{aligned}
$$

Quantitative evaluation with synthetic patterns of asymmetry

ORIGINAL

Unknown asymmetry pattern

- 100 facial scans
- Healthy subjects to serve as controls in dysmorphology studies

Quantitative evaluation with synthetic patterns of asymmetry

ORIGINAL
Unknown asymmetry pattern

- 100 facial scans
- Healthy subjects to serve as controls in dysmorphology studies

Quantitative evaluation with synthetic patterns of asymmetry

ORIGINAL
Unknown asymmetry pattern

- 100 facial scans
- Healthy subjects to serve as controls in dysmorphology studies

SYMMETRIZED

Symmetrized to an arbitrary plane - Not useful to recover the original asymmetry

Deformation with synthetic asymmetry pattern

SYNTHESIZED

The resulting shape
has a known
asymmetry pattern
(ground truth)

25 synthetic patterns applied applied to 100

 "real" facial scans- A few examples of the applied patterns (see suppl mat)

Results: average correlation coefficients

		Landmarks			Midline		Whole surface				Mixed	
		\sum_{i}^{n}	$\sum_{3}^{\frac{y}{0}}$		\sum_{3}^{n}	\sum_{-1}^{0}	\sum_{1}^{n}	$\begin{aligned} & \frac{n}{2} \\ & \frac{1}{3} \\ & \hline \end{aligned}$	$\sum_{\substack{0}}^{y}$		$\begin{aligned} & \frac{n}{2} \\ & \sum_{i}^{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \sum_{2}^{0} \\ & 3 \\ & i \\ & i \\ & i \end{aligned}$
Linear expansions of individual axes (with the nose tip at the origin)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.92 \\ & 0.87 \\ & 0.73 \end{aligned}$	$\begin{aligned} & \hline 0.95 \\ & 1.00 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 0.94 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{gathered} \hline-0.15 \\ 0.90 \\ 0.70 \end{gathered}$	$\begin{gathered} \hline-0.17 \\ 0.90 \\ 0.77 \end{gathered}$	$\begin{gathered} \hline-0.93 \\ 0.97 \\ 0.95 \end{gathered}$	$\begin{gathered} \hline-0.92 \\ 0.98 \\ 0.95 \end{gathered}$	$\begin{aligned} & \hline 0.82 \\ & 0.98 \\ & 0.96 \end{aligned}$	$\begin{aligned} & \hline 0.87 \\ & 0.99 \\ & 0.96 \end{aligned}$
Module expansions with respect to a given landmark	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.95 \\ & 0.75 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.99 \\ & 0.96 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 0.95 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 0.99 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 0.99 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.48 \\ & 0.64 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.50 \\ & 0.67 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.87 \\ & 0.85 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.94 \\ & 0.86 \\ & 0.88 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.93 \\ & 0.90 \\ & 0.92 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.94 \\ & 0.93 \\ & 0.94 \end{aligned}$
Combinations of vertical shift (y axis) and expansion of x or z axis	$\begin{gathered} 8 \\ 9 \\ 10 \end{gathered}$	$\begin{aligned} & 0.54 \\ & 0.94 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 0.99 \\ & 0.99 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.99 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.46 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.47 \\ & 0.51 \end{aligned}$	$\begin{gathered} \hline 0.94 \\ 0.86 \\ -0.05 \end{gathered}$	$\begin{gathered} \hline 0.95 \\ 0.43 \\ -0.05 \end{gathered}$	$\begin{aligned} & 0.95 \\ & 0.92 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.94 \\ & 0.90 \end{aligned}$
Linear or rotational horizontal shifts of the upper or lower face	$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.95 \\ & 0.84 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \hline-0.13 \\ & -0.33 \\ & -0.01 \\ & -0.14 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.65 \\ & 0.92 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.71 \\ & 0.97 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$
Progressive horizontal shifts of specific regions (e.g. mouth, nose, eyes)	$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline 0.76 \\ & 0.61 \\ & 0.83 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.18 \\ & -0.04 \\ & -0.47 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.88 \\ & 0.92 \\ & 0.76 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.94 \\ & 0.97 \\ & 0.84 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$
Quadratic distortions limited both vertically and horizontally from specific landmarks	$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$	$\begin{gathered} 0.12 \\ 0.37 \\ -0.53 \\ 0.87 \\ 0.72 \end{gathered}$	$\begin{aligned} & \hline 0.98 \\ & 1.00 \\ & 0.27 \\ & 0.85 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 1.00 \\ & 0.09 \\ & 0.96 \\ & 1.00 \end{aligned}$	$\begin{gathered} \hline-0.25 \\ 0.07 \\ -0.44 \\ 0.83 \\ -0.51 \end{gathered}$	$\begin{gathered} 1.00 \\ 1.00 \\ -0.42 \\ 0.60 \\ -0.33 \end{gathered}$	$\begin{aligned} & \hline 0.82 \\ & 0.91 \\ & 0.97 \\ & 0.53 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.97 \\ & 1.00 \\ & 0.56 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 0.78 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 0.65 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 0.98 \\ & 0.93 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 0.97 \\ & 0.94 \\ & 0.94 \end{aligned}$
Combinations of quadratic distortion and axes expansion	$\begin{aligned} & 23 \\ & 24 \\ & 25 \end{aligned}$	$\begin{gathered} 0.70 \\ 0.95 \\ -0.08 \end{gathered}$	$\begin{aligned} & 0.62 \\ & 0.85 \\ & 0.78 \end{aligned}$	$\begin{gathered} \hline 0.75 \\ 0.86 \\ -0.38 \end{gathered}$	$\begin{aligned} & 0.27 \\ & 0.96 \\ & 0.92 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.95 \\ & 0.92 \end{aligned}$	$\begin{gathered} 0.92 \\ -0.07 \\ 0.27 \end{gathered}$	$\begin{gathered} 0.92 \\ -0.18 \\ 0.29 \end{gathered}$	$\begin{gathered} 0.97 \\ -0.77 \\ 0.89 \end{gathered}$	$\begin{gathered} 0.97 \\ -0.76 \\ 0.88 \end{gathered}$	$\begin{aligned} & 0.99 \\ & 0.67 \\ & 0.90 \end{aligned}$	$\begin{aligned} & \hline 0.99 \\ & 0.84 \\ & 0.91 \end{aligned}$

Results: average correlation coefficients

Results: average correlation coefficients

	Landmarks			Midline		Whole surface				Mixed	
	\sum_{-}^{n}	\sum_{i}^{0}	$\begin{aligned} & \frac{0}{0} \\ & \sum_{1}^{0} \\ & 3 \\ & 3 \end{aligned}$	\sum_{-}^{n}	\sum_{-}^{0}	\sum_{-}^{n}	$\frac{\sum_{2}^{n}}{1}$	\sum_{-1}^{0}	\% 2 3 0 0	$\frac{0}{8}$ \sum_{i}^{0} \sum_{i}	
1	0.92	0.95	0.94	1.00	1.00	-0.15	-0.17	-0.93	-0.92	0.82	0.87
2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
5	0.95	0.99	1.00	1.00	1.00	0.48	0.50	0.87	0.86	0.93	0.94
6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
9	0.94	0.99	0.99	1.00	1.00	0.46	0.47	0.86	0.43	0.92	0.94
10	0.89	0.94	0.95	1.00	1.00	0.51	0.51	-0.05	-0.05	0.88	0.90
11	0.65	0.97	0.97	-0.13	1.00	0.84	0.92	1.00	1.00	1.00	1.00
12	0.95	1.00	1.00	-0.33	1.00	0.65	0.71	1.00	1.00	1.00	1.00
13	0.84	1.00	1.00	-0.01	1.00	0.92	0.97	1.00	1.00	1.00	1.00
14	0.67	1.00	1.00	-0.14	1.00	0.60	0.64	1.00	1.00	1.00	1.00
15	0.76	1.00	1.00	-0.18	1.00	0.88	0.94	1.00	1.00	1.00	1.00
16	0.61	1.00	1.00	-0.04	1.00	0.92	0.97	1.00	1.00	1.00	1.00
17	0.83	1.00	1.00	-0.47	1.00	0.76	0.84	1.00	1.00	1.00	1.00
18	0.12	0.98	0.97	-0.25	1.00	0.82	0.90	1.00	1.00	1.00	1.00
19	0.37	1.00	1.00	0.07	1.00	0.91	0.97	1.00	1.00	1.00	1.00
20	-0.53	0.27	0.09	-0.44	-0.42	0.97	1.00	1.00	1.00	0.98	0.97
21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
22	0.72	1.00	1.00	-0.51	-0.33	0.84	0.91	1.00	1.00	0.94	0.94
23	0.70	0.62	0.75	0.27	0.28	0.92	0.92	0.97	0.97	0.99	0.99
24	0.95	0.85	0.86	0.96	0.95	-0.07	-0.18	-0.77	-0.76	0.67	0.84
25	-0.08	0.78	-0.38	0.92	0.92	0.27	0.29	0.89	0.88	0.90	0.91

	Landmarks			Midline		Whole surface				Mixed	
	\sum_{-1}^{∞}	$\sum_{\Delta}^{\frac{y}{5}}$		\sum_{1}^{n}	\sum_{3}^{5}	\sum_{3}^{5}	$\frac{\sum_{3}^{n}}{3}$	\sum_{3}^{5}	会	先	年
1	0.92	0.95	0.94	1.00	1.00					0.82	0.87
2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
5	0.95	0.99	1.00	1.00	1.00	0.48	0.50	0.87	0.86	0.93	0.94
6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
9	0.94	0.99	0.99	1.00	1.00	0.46	0.47	0.86	0.43	0.92	0.94
10	0.89	0.94	0.95	1.00	1.00	0.51	0.51			0.88	0.90
11	0.65	0.97	0.97		1.00	0.84	0.92	1.00	1.00	1.00	1.00
12	0.95	1.00	1.00		1.00	0.65	0.71	1.00	1.00	1.00	1.00
13	0.84	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
14	0.67	1.00	1.00		1.00	0.60	0.64	1.00	1.00	1.00	1.00
15	0.76	1.00	1.00		1.00	0.88	0.94	1.00	1.00	1.00	1.00
16	0.61	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
17	0.83	1.00	1.00		1.00	0.76	0.84	1.00	1.00	1.00	1.00
18	0.12	0.98	0.97		1.00	0.82	0.90	1.00	1.00	1.00	1.00
19	0.37	1.00	1.00	0.07	1.00	0.91	0.97	1.00	1.00	1.00	1.00
20		0.27	0.09			0.97	1.00	1.00	1.00	0.98	0.97
21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
22	0.72	1.00	1.00			0.84	0.91	1.00	1.00	0.94	0.94
23	0.70	0.62	0.75	0.27	0.28	0.92	0.92	0.97	0.97	0.99	0.99
24	0.95	0.85	0.86	0.96	0.95					0.67	0.84
25		0.78		0.92	0.92	0.27	0.29	0.89	0.88	0.90	0.91

	Landmarks			Midline		Whole surface				Mixed	
	\sum_{-1}^{∞}	$\sum_{\Delta}^{\frac{y}{5}}$		\sum_{1}^{n}	\sum_{3}^{5}	\sum_{1}^{n}	$\frac{\sum_{3}^{n}}{3}$	\sum_{3}^{5}		先	年
1	0.92	0.95	0.94	1.00	1.00					0.82	0.87
2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
5	0.95	0.99	1.00	1.00	1.00			0.87	0.86	0.93	0.94
6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
9	0.94	0.99	0.99	1.00	1.00			0.86		0.92	0.94
10	0.89	0.94	0.95	1.00	1.00	0.51	0.51			0.88	0.90
11	0.65	0.97	0.97		1.00	0.84	0.92	1.00	1.00	1.00	1.00
12	0.95	1.00	1.00		1.00	0.65	0.71	1.00	1.00	1.00	1.00
13	0.84	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
14	0.67	1.00	1.00		1.00	0.60	0.64	1.00	1.00	1.00	1.00
15	0.76	1.00	1.00		1.00	0.88	0.94	1.00	1.00	1.00	1.00
16	0.61	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
17	0.83	1.00	1.00		1.00	0.76	0.84	1.00	1.00	1.00	1.00
18		0.98	0.97		1.00	0.82	0.90	1.00	1.00	1.00	1.00
19		1.00	1.00		1.00	0.91	0.97	1.00	1.00	1.00	1.00
20						0.97	1.00	1.00	1.00	0.98	0.97
21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
22	0.72	1.00	1.00			0.84	0.91	1.00	1.00	0.94	0.94
23	0.70	0.62	0.75			0.92	0.92	0.97	0.97	0.99	0.99
24	0.95	0.85	0.86	0.96	0.95					0.67	0.84
25		0.78		0.92	0.92			0.89	0.88	0.90	0.91

	Landmarks			Midline		Whole surface				Mixed	
	\sum_{-1}^{∞}	$\sum_{\Delta}^{\frac{y}{5}}$		\sum_{1}^{n}	\sum_{3}^{5}	\sum_{1}^{n}	$\begin{aligned} & \sum_{1}^{n} \\ & \frac{1}{3} \\ & \hline \end{aligned}$	\sum_{3}^{5}		先	年
1	0.92	0.95	0.94	1.00	1.00					0.82	0.87
2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
5	0.95	0.99	1.00	1.00	1.00			0.87	0.86	0.93	0.94
6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
9	0.94	0.99	0.99	1.00	1.00			0.86		0.92	0.94
10	0.89	0.94	0.95	1.00	1.00	0.51	0.51			0.88	0.90
11	0.65	0.97	0.97		1.00	0.84	0.92	1.00	1.00	1.00	1.00
12	0.95	1.00	1.00		1.00	0.65	0.71	1.00	1.00	1.00	1.00
13	0.84	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
14	0.67	1.00	1.00		1.00	0.60	0.64	1.00	1.00	1.00	1.00
15	0.76	1.00	1.00		1.00	0.88	0.94	1.00	1.00	1.00	1.00
16	0.61	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
17	0.83	1.00	1.00		1.00	0.76	0.84	1.00	1.00	1.00	1.00
18		0.98	0.97		1.00	0.82	0.90	1.00	1.00	1.00	1.00
19		1.00	1.00		1.00	0.91	0.97	1.00	1.00	1.00	1.00
20						0.97	1.00	1.00	1.00	0.98	0.97
21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
22	0.72	1.00	1.00			0.84	0.91	1.00	1.00	0.94	0.94
23	0.70	0.62	0.75			0.92	0.92	0.97	0.97	0.99	0.99
24	0.95	0.85	0.86	0.96	0.95					0.67	0.84
25		0.78		0.92	0.92			0.89	0.88	0.90	0.91

Hybrid methods

■ Hemispheres + midline
(HM-LMedS \& HM-DW.LMedS)

- The midline provides complementary performance to surface-based methods
- Large imbalance between the number of surface and midline points

$$
\begin{aligned}
& \underset{\hat{T}}{\arg \min }\left(\operatorname{median}\left\{\left\|e_{D W}^{i}\right\|^{2}\right\}_{\forall i \notin \mathcal{I}_{M L}}+\right. \\
& \left.\quad+\frac{1}{2} \text { median }\left\{e_{i}^{2}\right\}_{\forall i \in \mathcal{I}_{M L}}+\sum_{i=1}^{n_{V}} \frac{\left|e_{i}^{2}-e_{\vec{i}}^{2}\right|}{n_{V}}\right)
\end{aligned}
$$

$e_{D W}^{i}=\exp \left(\frac{-1}{\tau} \frac{d_{M L}\left(\mathbf{v}_{S}^{i}\right)}{\max \left(d_{M L}\left(\mathbf{v}_{S}\right)\right)}\right)\left(\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right)$
$e_{i}=\left\|\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right\|, \quad e_{\bar{i}}=\left\|\mathbf{v}_{S}^{\bar{i}}-\hat{T}\left(\mathbf{v}_{M}^{i}\right)\right\|$

$$
\mathcal{I}_{M L}=\left\{i \in\left[1 ; n_{V}\right] \mid \bar{i}=i\right\}
$$

Hybrid methods

■ Hemispheres + midline
(HM-LMedS \& HM-DW.LMedS)

- The midline provides complementary performance
 to surface-based methods
- Large imbalance between the number of surface and midline points

$$
\begin{aligned}
& \underset{\hat{T}}{\arg \min }\left(\text { median }\left\{\left\|e_{D W}^{i}\right\|^{2}\right\}_{\forall i \notin \mathcal{I}_{M L}}+\right. \\
& \left.\quad+\frac{1}{2} \text { median }\left\{e_{i}^{2}\right\}_{\forall i \in \mathcal{I}_{M L}}+\sum_{i=1}^{n_{V}} \frac{\left|e_{i}^{2}-e_{\hat{i}}^{2}\right|}{n_{V}}\right)
\end{aligned}
$$

$e_{D W}^{i}=\exp \left(\frac{-1}{\tau} \frac{d_{M L}\left(\mathbf{v}_{S}^{i}\right)}{\max \left(d_{M L}\left(\mathbf{v}_{S}\right)\right)}\right)\left(\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right)$
$e_{i}=\left\|\mathbf{v}_{S}^{i}-\hat{T}\left(\mathbf{v}_{M}^{\bar{i}}\right)\right\|, \quad e_{\bar{i}}=\left\|\mathbf{v}_{S}^{\bar{i}}-\hat{T}\left(\mathbf{v}_{M}^{i}\right)\right\|$

$$
\mathcal{I}_{M L}=\left\{i \in\left[1 ; n_{V}\right] \mid \bar{i}=i\right\}
$$

Conclusions

- We tested different alignment methods for the estimation of point-wise 3D surface asymmetry
- Important differences between methods
- Widespread least-squares cost functions performed the worst
- Landmark-based methods were generally better than methods using the whole surface
- A hybrid approach combining surface and mid-line terms achieved the best performance
- Exponential decaying of weights as points depart from the midline
- As a byproduct we get more robustness to the exact definition of face boundaries

A qualitative example estimating the unknown asymmetry of a real scan

Landmarkbased LMS

Midline-based LMS

DW-HM-
LMdeS

A qualitative example estimating the unknown asymmetry of a real scan

Landmarkbased LMS

Midline-based LMS

DW-HMLMdeS

Asymmetry patterns magnified by $2.0: 1$

Thank you for your attention

For more information please visit: http://fsukno.atspace.eu

Craniofacial landmarks

Manual annotations from: R. Hennessy et al. Biol Psychiat 51 (2002) 507-514

Comparison of hemispheres by reflection

■ Reflection into an arbitrary plane

We can register the mirrored surface with the original

Comparison of hemispheres by reflection

- Reflection into an arbitrary plane
- Alignment of the original and mirrored surfaces

■ Straight-forward comparison

- Left w/ right
- Right w/ left

Comparison of hemispheres by reflection

- Reflection into an arbitrary plane
- Alignment of the original and mirrored surfaces

■ Straight-forward comparison

- Left w/ right
- Right w/ left

How do we align both surfaces?

Alignment of the mid-sagittal plane

■ The mid-sagittal plane of the original and mirrored surfaces should be the same

■ Hence, making both mid-sagittal planes coincide should align the surfaces

Complex example I

Complex example I

