

On the Quantitative Analysis of Craniofacial Asymmetry in 3D

F.M. Sukno¹, M.A, Rojas^{2,3}, J.L- Waddington² and P.F. Whelan³

¹ Pompeu Fabra University, Barcelona, Spain
² Royal College of Surgeons in Ireland, Dublin, Ireland
³ Dublin City University, Dublin, Ireland

Research context: Craniofacial Dysmorphology

- Craniofacial geometry has been suggested as an index of early brain dysmorphogenesis in neuropsychiatric disorders
 - Down syndrome
 - Autism
 - Schizophrenia
 - Bipolar disorder
 - Fetal alcohol syndrome
 - Velocardiofacial syndrome
 - Cornelia de Large syndrome
 - Shape differences can be <u>very subtle</u>
 - Need for highly accuracy analysis

The interest in symmetry

Wide application scope in computer vision

- Face recognition
- Gender classification
- Landmark detection
- .. and beyond
 - Facial attractiveness, mate selection
 - Assessment of orthognatic surgery outcome
- Developmental dysmorphology
 - Autism spectrum disorders
 - Schizophrenia
 - Fetal alcohol syndrome
 - Differences can be very subtle

Measuring bilateral facial symmetry in 3D

What is our accuracy in asymmetry estimation?

- Shape-based definition
 - Difference between left and right hemispheres
 - Deviation from nearest symmetric shape
 - Estimation of the symmetry plane
 - Alignment of original and reflected shapes
- A synthetic motivation example
 - Traditional approaches perform poorly
 - Landmark- and surface-based discrepancies
- Quantitative evaluation
 - Point-wise 3D measurements of asymmetry
 - Comparison to ground-truth asymmetries
 - Synthetic patterns of asymmetry
 - Starting from a perfectly symmetric face

Claes et al (2011) Journal of Anatomy

Measuring bilateral facial symmetry in 3D

What is our accuracy in asymmetry estimation?

- Shape-based definition
 - Difference between left and right hemispheres
 - Deviation from nearest symmetric shape
 - Estimation of the symmetry plane
 - Alignment of original and reflected shapes
- A synthetic motivation example
 - Traditional approaches perform poorly
 - Landmark- and surface-based discrepancies
- Quantitative evaluation
 - Point-wise 3D measurements of asymmetry
 - Comparison to ground-truth asymmetries
 - Synthetic patterns of asymmetry
 - Starting from a perfectly symmetric face

Claes et al (2011) Journal of Anatomy

Bilateral symmetry: facial hemispheres

Bilateral symmetry: facial hemispheres

Plane of bilateral symmetry

Bilateral symmetry: facial hemispheres

Plane of bilateral symmetry

Bilateral symmetry computation

Original surface S

- I. Obtained mirrored surface S_M
 - Arbitrary plane
- 2. Put S and S_M in correspondence
 - Rigid transformation T
 - Vertex index reflection
- Compute asymmetry by point-wise difference between S and the mirrored-aligned S_M

 $(\cdot)^{ref}$ Reflection operator: a function that swaps left and right vertex indices

$$(j)^{ref} = \overline{j}, \qquad (\overline{j})^{ref} = j$$

Asymmetry ~ $S - T((SM)^{ref})$

Bilateral symmetry computation

Original surface S

- I. Obtained mirrored surface S_M
 - Arbitrary plane
- 2. Put S and S_M in correspondence
 - Rigid transformation T
 - Vertex index reflection
- Compute asymmetry by point-wise difference between S and the mirrored-aligned S_M

- $(\cdot)^{ref}$ Reflection operator: a function that swaps left and right vertex indices

$$(j)^{ref} = \overline{j}, \qquad (\overline{j})^{ref} = j$$

Asymmetry ~ $S - T((SM)^{ref})$

- Let S_{symm} be a facial surface that is perfectly symmetric about the plane x = 0. Thus, symmetric paired
- Let us generate S₁ by expanding the left side of S_{symm} linearly with respect to the coordinates of the x-axis. If we represent surface S_{symm} by a set of n_V vertices {v_sⁱ}^{n_V}_{i=1} with v_sⁱ = (x_sⁱ, y_sⁱ, z_sⁱ)^T then:

$$\forall (\mathbf{v}_s^i \in \mathcal{S}_{symm}, \mathbf{v}_1^i \in \mathcal{S}_1) : \\ \mathbf{v}_1^i = \begin{cases} \mathbf{v}_s^i + (\alpha \, x_s^i, 0, 0)^T & \text{if } x_s^i > 0 \\ \mathbf{v}_s^i & \text{otherwise} \end{cases}$$

where α is a constant that controls the degree of expansion.

- Let S_{symm} be a facial surface that is perfectly symmetric about the plane x = 0. Thus, symmetric paired
- Let us generate S₁ by expanding the left side of S_{symm} linearly with respect to the coordinates of the x-axis. If we represent surface S_{symm} by a set of n_V vertices {v_sⁱ}^{n_V}_{i=1} with v_sⁱ = (x_sⁱ, y_sⁱ, z_sⁱ)^T then:

$$\forall (\mathbf{v}_s^i \in \mathcal{S}_{symm}, \mathbf{v}_1^i \in \mathcal{S}_1) : \\ \mathbf{v}_1^i = \begin{cases} \mathbf{v}_s^i + (\alpha \, x_s^i, 0, 0)^T & \text{if } x_s^i > 0 \\ \mathbf{v}_s^i & \text{otherwise} \end{cases}$$

where α is a constant that controls the degree of expansion.

Let us generate S₁ by expanding the left side of S_{symm} linearly with respect to the coordinates of the x-axis. If we represent surface S_{symm} by a set of n_V vertices {v_sⁱ}^{n_V}_{i=1} with v_sⁱ = (x_sⁱ, y_sⁱ, z_sⁱ)^T then:

Let us generate S₁ by expanding the left side of S_{symm} linearly with respect to the coordinates of the x-axis. If we represent surface S_{symm} by a set of n_V vertices {v_sⁱ}^{n_V}_{i=1} with v_sⁱ = (x_sⁱ, y_sⁱ, z_sⁱ)^T then:

A motivating example ... against traditional Procrustes alignment to estimate T What is the resulting asymmetry pattern?

What is the resulting asymmetry pattern?

 Calculated as the difference w.r.t. the symmetrization of S₁, namely the closest symmetric shape to S₁:

$$\mathcal{S}_{1s} = \frac{\mathcal{S}_1 + M_x{}^{ref}(\mathcal{S}_1)}{2}$$

- What is the resulting asymmetry pattern?
 - Calculated as the difference w.r.t. the symmetrization of S_1 , namely the closest symmetric shape to S_1 :

 $\mathcal{S}_{1s} = \frac{\mathcal{S}_1 + {M_x}^{ref}(\mathcal{S}_1)}{2} \qquad \begin{array}{l} \text{Because we know that the} \\ \text{symmetry plane is at x=0} \end{array}$

What is the resulting asymmetry pattern?

 Calculated as the difference w.r.t. the symmetrization of S₁, namely the closest symmetric shape to S₁:

$$\mathcal{S}_{1s} = \frac{\mathcal{S}_1 + M_x^{ref}(\mathcal{S}_1)}{2}$$

Because we know that the symmetry plane is at x=0

• The asymmetry pattern is then:

$$\mathcal{A}_1 = \mathcal{S}_1 - \frac{\mathcal{S}_1 + M_x^{ref}(\mathcal{S}_1)}{2} = \frac{\mathcal{S}_1 - M_x^{ref}(\mathcal{S}_1)}{2}$$

What is the resulting asymmetry pattern?

 Calculated as the difference w.r.t. the symmetrization of S₁, namely the closest symmetric shape to S₁:

$$\mathcal{S}_{1s} = \frac{\mathcal{S}_1 + M_x^{ref}(\mathcal{S}_1)}{2}$$

Because we know that the symmetry plane is at x=0

• The asymmetry pattern is then:

$$\mathcal{A}_1 = \mathcal{S}_1 - \frac{\mathcal{S}_1 + M_x^{ref}(\mathcal{S}_1)}{2} = \frac{\mathcal{S}_1 - M_x^{ref}(\mathcal{S}_1)}{2}$$

In the present example:

$$\mathbf{v}_{1s}^{i} = \begin{cases} \frac{1}{2} (x_{s}^{i} + \alpha \, x_{s}^{i}, y_{s}^{i}, z_{s}^{i})^{T} + \frac{1}{2} (-x_{s}^{\overline{i}}, y_{s}^{\overline{i}}, z_{s}^{\overline{i}})^{T} & \text{if } x_{s}^{i} > 0\\ \frac{1}{2} (x_{s}^{i}, y_{s}^{i}, z_{s}^{i})^{T} + \frac{1}{2} (-x_{s}^{\overline{i}} - \alpha x_{s}^{\overline{i}}, y_{s}^{\overline{i}}, z_{s}^{\overline{i}})^{T} & \text{otherwise} \end{cases}$$
$$\therefore \mathbf{a}_{1}^{i} = \begin{cases} \left(\frac{\alpha}{2} x_{s}^{i}, 0, 0\right)^{T} & \text{if } x_{s}^{i} > 0\\ \left(-\frac{\alpha}{2} x_{s}^{i}, 0, 0\right)^{T} & \text{otherwise} \end{cases}$$

What is the resulting asymmetry pattern?

• Calculated as the difference w.r.t. the symmetrization of S_1 , namely the closest symmetric shape to S_1 :

 $S_{1s} = \frac{S_1 + M_x^{ref}(S_1)}{2}$ Because we know that the symmetry plane is at x=0

• The asymmetry pattern is then:

$$\mathcal{A}_1 = \mathcal{S}_1 - \frac{\mathcal{S}_1 + M_x^{ref}(\mathcal{S}_1)}{2} = \frac{\mathcal{S}_1 - M_x^{ref}(\mathcal{S}_1)}{2}$$

In the present example:

$$\mathbf{v}_{1s}^{i} = \begin{cases} \frac{1}{2} (x_{s}^{i} + \alpha \, x_{s}^{i}, y_{s}^{i}, z_{s}^{i})^{T} + \frac{1}{2} (-x_{s}^{\overline{i}}, y_{s}^{\overline{i}}, z_{s}^{\overline{i}})^{T} & \text{if } x_{s}^{i} > 0\\ \frac{1}{2} (x_{s}^{i}, y_{s}^{i}, z_{s}^{i})^{T} + \frac{1}{2} (-x_{s}^{\overline{i}} - \alpha x_{s}^{\overline{i}}, y_{s}^{\overline{i}}, z_{s}^{\overline{i}})^{T} & \text{otherwise} \end{cases}$$
$$\therefore \mathbf{a}_{1}^{i} = \begin{cases} \left(\frac{\alpha}{2} x_{s}^{i}, 0, 0\right)^{T} & \text{if } x_{s}^{i} > 0\\ \left(-\frac{\alpha}{2} x_{s}^{i}, 0, 0\right)^{T} & \text{otherwise} \end{cases}$$

What is the resulting asymmetry pattern?

• Calculated as the difference w.r.t. the symmetrization of S_1 , namely the closest symmetric shape to S_1 :

 $\mathcal{S}_{1s} = \frac{\mathcal{S}_1 + M_x^{rej}(\mathcal{S}_1)}{2} \qquad \begin{array}{l} \text{Because we know that the} \\ \text{symmetry plane is at x=0} \end{array}$

• The asymmetry pattern is then:

$$A_1 =$$
 GROUND TRUTH

$$=\frac{\mathcal{S}_1 - M_x^{ref}(\mathcal{S}_1)}{2}$$

In the present example:

 $\mathbf{v}_{1s}^{i} = \begin{cases} \frac{1}{2} (x_{s}^{i} + \alpha x_{s}^{i}, y_{s}^{i}, z_{s}^{i})^{T} + \frac{1}{2} (-x_{s}^{\overline{i}}, y_{s}^{\overline{i}}, z_{s}^{\overline{i}})^{T} & \text{if } x_{s}^{i} > 0\\ \frac{1}{2} (x_{s}^{i}, y_{s}^{i}, z_{s}^{i})^{T} + \frac{1}{2} (-x_{s}^{\overline{i}} - \alpha x_{s}^{\overline{i}}, y_{s}^{\overline{i}}, z_{s}^{\overline{i}})^{T} & \text{otherwise} \end{cases}$ $\therefore \mathbf{a}_1^i = \begin{cases} \left(\frac{\alpha}{2} x_s^i, 0, 0\right)^T & \text{if } x_s^i > 0\\ \left(-\frac{\alpha}{2} x_s^i, 0, 0\right)^T & \text{otherwise} \end{cases}$

What is the resulting asymmetry pattern?

• Calculated as the difference w.r.t. the symmetrization of S_1 , namely the closest symmetric shape to S_1 :

 $\mathcal{S}_{1s} = \frac{\mathcal{S}_1 + M_x^{ref}(\mathcal{S}_1)}{2} \qquad \begin{array}{l} \text{Because we know that the} \\ \text{symmetry plane is at x=0} \end{array}$

• The asymmetry pattern is then:

$$A_1 =$$
 GROUND TRUTH $= \frac{S_1 - M_x^{ref}(S_1)}{2}$

What is the resulting asymmetry pattern?

• Calculated as the difference w.r.t. the symmetrization of S_1 , namely the closest symmetric shape to S_1 :

 $\mathcal{S}_{1s} = \frac{\mathcal{S}_1 + M_x^{ref}(\mathcal{S}_1)}{2} \qquad \begin{array}{l} \text{Because we know that the} \\ \text{symmetry plane is at x=0} \end{array}$

• The asymmetry pattern is then:

$$\mathcal{A}_1 = \operatorname{GROUND} \operatorname{TRUTH} = \frac{\mathcal{S}_1 - M_x^{ref}(\mathcal{S}_1)}{2}$$

$$\hat{\mathcal{A}}_1 = \frac{\mathcal{S}_1 - T(M_x^{ref}(\mathcal{S}_1))}{2}$$

What is the resulting asymmetry pattern?

• Calculated as the difference w.r.t. the symmetrization of S_1 , namely the closest symmetric shape to S_1 :

 $\mathcal{S}_{1s} = \frac{\mathcal{S}_1 + M_x^{ref}(\mathcal{S}_1)}{2} \qquad \begin{array}{l} \text{Because we know that the} \\ \text{symmetry plane is at x=0} \end{array}$

• The asymmetry pattern is then:

$$\mathcal{A}_1 = \operatorname{GROUND} \operatorname{TRUTH} = \frac{\mathcal{S}_1 - M_x^{ref}(\mathcal{S}_1)}{2}$$

$$\hat{\mathcal{A}}_{1} = \frac{\mathcal{S}_{1} - T(M_{x}^{ref}(\mathcal{S}_{1}))}{2}$$

$$\underset{\hat{T}}{\operatorname{arg\,min}} \sum_{\forall \mathbf{v}_{S}} \|\mathbf{v}_{S} - \hat{T}(\mathbf{v}_{M}^{ref})\|^{2}, \quad \mathbf{v}_{S} \in \mathcal{S}, \, \mathbf{v}_{M}^{ref} \in \mathcal{S}_{M}^{ref}$$

$$\hat{\mathcal{A}}_{1} = \frac{\mathcal{S}_{1} - T(M_{x}^{ref}(\mathcal{S}_{1}))}{2}$$
$$\underset{\hat{T}}{\operatorname{arg\,min}} \sum_{\forall \mathbf{v}_{S}} \|\mathbf{v}_{S} - \hat{T}(\mathbf{v}_{M}^{ref})\|^{2}, \quad \mathbf{v}_{S} \in \mathcal{S}, \, \mathbf{v}_{M}^{ref} \in \mathcal{S}_{M}^{ref}$$

$$\begin{aligned} \hat{\mathcal{A}}_1 &= \frac{\mathcal{S}_1 - T(M_x^{ref}(\mathcal{S}_1))}{2} \\ \arg\min_{\hat{T}} \sum_{\forall \mathbf{v}_S} \|\mathbf{v}_S - \hat{T}(\mathbf{v}_M^{ref})\|^2, \quad \mathbf{v}_S \in \mathcal{S}, \, \mathbf{v}_M^{ref} \in \mathcal{S}_M^{ref} \end{aligned}$$

Asymmetry estimation / Alignment methods

LMS (Least mean of squares) $\underset{\hat{T}}{\operatorname{arg\,min}} \sum_{\forall i} \|\mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}})\|^{2}$

CW-LMS (Confidence-weighted LMS)

$$\underset{\hat{T}}{\arg\min} \sum_{\forall i} w_i \| \mathbf{v}_S^i - \hat{T}(\mathbf{v}_M^{\overline{i}}) \|^2$$

- Gaussian distribution $N(0, \sigma)$ for inliers
- Uniform distribution λ^{-1} for outliers
- Van Leemput et al. ÌEEE TMI, 20(8), 200 I

LMedS (Least median of squares)

$$\underset{\hat{T}}{\operatorname{arg\,min}} \left(\operatorname{median} \left\{ \| \mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}}) \|^{2} \right\}_{i=1}^{n_{V}} \right),$$

$$e_{i} = \|\mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}})\|$$
$$\sigma = \sqrt{\frac{\sum_{\forall i} w_{i} e_{i}}{\sum_{\forall i} e_{i}}}$$
$$\lambda = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}K^{2}\right)$$

Asymmetry estimation / Alignment methods

DW-LMedS (Distance-weighted LMedS)

- Symmetry enforcement of the recovered pattern of asymmetry
- Weights decrease with the distance to the mid-line d_{ML}
 - Facial asymmetry tends to grow as we depart from the mid-line

$$\underset{\hat{T}}{\operatorname{arg\,min}} \left(\operatorname{median} \left\{ \| e_{DW}^{i} \|^{2} \right\}_{i=1}^{n_{V}} + \sum_{i=1}^{n_{V}} \frac{|e_{i}^{2} - e_{\overline{i}}^{2}|}{n_{V}} \right)$$

Asymmetry estimation / Alignment methods

DW-LMedS (Distance-weighted LMedS)

- Symmetry enforcement of the recovered pattern of asymmetry
- Weights decrease with the distance to the mid-line d_{ML}
 - Facial asymmetry tends to grow as we depart from the mid-line

$$\arg\min_{\hat{T}} \left(\operatorname{median} \left\{ \| e_{DW}^{i} \|^{2} \right\}_{i=1}^{n_{V}} + \sum_{i=1}^{n_{V}} \frac{|e_{i}^{2} - e_{\overline{i}}^{2}|}{n_{V}} \right)$$
$$e_{DW}^{i} = \exp\left(\frac{-1}{\tau} \frac{d_{ML}(\mathbf{v}_{S}^{i})}{\max\left(d_{ML}(\mathbf{v}_{S})\right)} \right) \left(\mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}}) \right)$$
$$e_{i} = \| \mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}}) \|, \qquad e_{\overline{i}} = \| \mathbf{v}_{S}^{\overline{i}} - \hat{T}(\mathbf{v}_{M}^{i}) \|$$

Quantitative evaluation with synthetic patterns of asymmetry

ORIGINAL Unknown asymmetry pattern

- 100 facial scans
- Healthy subjects to serve as controls in dysmorphology studies

Quantitative evaluation with synthetic patterns of asymmetry

ORIGINAL Unknown asymmetry pattern

- 100 facial scans
- Healthy subjects to serve as controls in dysmorphology studies

SYMMETRIZED

Symmetrized to an arbitrary plane – Not useful to recover the original asymmetry

Quantitative evaluation with synthetic patterns of asymmetry

- 100 facial scans
- Healthy subjects to serve as controls in dysmorphology studies

SYMMETRIZED

Symmetrized to an arbitrary plane – Not useful to recover the original asymmetry

Deformation with synthetic asymmetry pattern

SYNTHESIZED

The resulting shape has a known asymmetry pattern (ground truth)

25 synthetic patterns applied applied to 100 "real" facial scans

A few examples of the applied patterns (see suppl mat)

Results: average correlation coefficients

		Landmarks			Midline			Whole	Mixed			
Asymm Patterns		LMS	LMedS	DW-LMedS	TMS	LMedS	IMS	CW-LMS	LMedS	DW-LMedS	HM-LMedS	HM-DW-LMedS
Linear expansions of individual	1	0.92	0.95	0.94	1.00	1.00	-0.15	-0.17	-0.93	-0.92	0.82	0.87
axes (with the nose tip at the	2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
origin)	3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
	4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
Module expansions with respect	5	0.95	0.99	1.00	1.00	1.00	0.48	0.50	0.87	0.86	0.93	0.94
to a given landmark	6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
	7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
Combinations of vertical shift $(y$	8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
axis) and expansion of x or z axis	9	0.94	0.99	0.99	1.00	1.00	0.46	0.47	0.86	0.43	0.92	0.94
	10	0.89	0.94	0.95	1.00	1.00	0.51	0.51	-0.05	-0.05	0.88	0.90
	11	0.65	0.97	0.97	-0.13	1.00	0.84	0.92	1.00	1.00	1.00	1.00
Linear or rotational horizontal	12	0.95	1.00	1.00	-0.33	1.00	0.65	0.71	1.00	1.00	1.00	1.00
shifts of the upper or lower face	13	0.84	1.00	1.00	-0.01	1.00	0.92	0.97	1.00	1.00	1.00	1.00
	14	0.67	1.00	1.00	-0.14	1.00	0.60	0.64	1.00	1.00	1.00	1.00
Progressive horizontal shifts of	15	0.76	1.00	1.00	-0.18	1.00	0.88	0.94	1.00	1.00	1.00	1.00
specific regions (e.g. mouth, nose,	16	0.61	1.00	1.00	-0.04	1.00	0.92	0.97	1.00	1.00	1.00	1.00
eyes)	17	0.83	1.00	1.00	-0.47	1.00	0.76	0.84	1.00	1.00	1.00	1.00
	18	0.12	0.98	0.97	-0.25	1.00	0.82	0.90	1.00	1.00	1.00	1.00
Ouadratic distortions limited both	19	0.37	1.00	1.00	0.07	1.00	0.91	0.97	1.00	1.00	1.00	1.00
vertically and horizontally from specific landmarks	20	-0.53	0.27	0.09	-0.44	-0.42	0.97	1.00	1.00	1.00	0.98	0.97
	21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
	22	0.72	1.00	1.00	-0.51	-0.33	0.84	0.91	1.00	1.00	0.94	0.94
Combinations of quadratic distortion and axes expansion	23	0.70	0.62	0.75	0.27	0.28	0.92	0.92	0.97	0.97	0.99	0.99
	24	0.95	0.85	0.86	0.96	0.95	-0.07	-0.18	-0.77	-0.76	0.67	0.84
	25	-0.08	0.78	-0.38	0.92	0.92	0.27	0.29	0.89	0.88	0.90	0.91

Results: average correlation coefficients

												
	Landmarks			Midline			Whole	Mixed				
Asymm Patterns			n en en prn a nt nt a	ex.	TWS	LMedS	TWS	CW-LMS	LMedS	DW-LMedS	HM-LMedS	HM-DW-LMedS
Linear expansions of individual	1	1	ac sn ac	P	1.00	1.00	-0.15	-0.17	-0.93	-0.92	0.82	0.87
axes (with the nose tip at the	2		cph o is cph		1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
origin)	3	ct	n li ch		1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
	4		Pg •		1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
Module expansions with respect	5	0.95	0.99	1.00	1.00	1.00	0.48	0.50	0.87	0.86	0.93	0.94
to a given landmark	6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
	7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
Combinations of vertical shift $(y$	8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
axis) and expansion of x or z axis	9	0.94	0.99	0.99	1.00	1.00	0.46	0.47	0.86	0.43	0.92	0.94
	10	0.89	0.94	0.95	1.00	1.00	0.51	0.51	-0.05	-0.05	0.88	0.90
	11	0.65	0.97	0.97	-0.13	1.00	0.84	0.92	1.00	1.00	1.00	1.00
Linear or rotational horizontal	12	0.95	1.00	1.00	-0.33	1.00	0.65	0.71	1.00	1.00	1.00	1.00
shifts of the upper or lower face	13	0.84	1.00	1.00	-0.01	1.00	0.92	0.97	1.00	1.00	1.00	1.00
	14	0.67	1.00	1.00	-0.14	1.00	0.60	0.64	1.00	1.00	1.00	1.00
Progressive horizontal shifts of	15	0.76	1.00	1.00	-0.18	1.00	0.88	0.94	1.00	1.00	1.00	1.00
specific regions (e.g. mouth, nose,	16	0.61	1.00	1.00	-0.04	1.00	0.92	0.97	1.00	1.00	1.00	1.00
eyes)	17	0.83	1.00	1.00	-0.47	1.00	0.76	0.84	1.00	1.00	1.00	1.00
	18	0.12	0.98	0.97	-0.25	1.00	0.82	0.90	1.00	1.00	1.00	1.00
Quadratic distortions limited both vertically and horizontally from specific landmarks	19	0.37	1.00	1.00	0.07	1.00	0.91	0.97	1.00	1.00	1.00	1.00
	20	-0.53	0.27	0.09	-0.44	-0.42	0.97	1.00	1.00	1.00	0.98	0.97
	21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
	22	0.72	1.00	1.00	-0.51	-0.33	0.84	0.91	1.00	1.00	0.94	0.94
	23	0.70	0.62	0.75	0.27	0.28	0.92	0.92	0.97	0.97	0.99	0.99
Combinations of quadratic distortion and axes expansion	24	0.95	0.85	0.86	0.96	0.95	-0.07	-0.18	-0.77	-0.76	0.67	0.84
unsiorition and axes expansion	25	-0.08	0.78	-0.38	0.92	0.92	0.27	0.29	0.89	0.88	0.90	0.91

Results: average correlation coefficients

		Landmarks			Midline			Whole	Mixed			
Asymm Patterns		ex en en ex					TWS	CW-LMS	LMedS	DW-LMedS	HM-LMedS	HM-DW-LMedS
Linear expansions of individual axes (with the nose tip at the	1 2	9	ac sn ac cph ls cph	P	6	2/	-0.15 0.90	-0.17 0.90	-0.93 0.97	-0.92 0.98	0.82 0.98	0.87 0.99
origin)	3		i li ch • sl			<u> </u>	0.70	0.77	0.95	0.95	0.96	0.96
	4	1	Pg•		1	.00	0.67	0.70	0.93	0.94	0.95	0.97
Module expansions with respect	5	0.95	0.99	1.00	1.00	1.00	0.48	0.50	0.87	0.86	0.93	0.94
to a given landmark	6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
	7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
Combinations of vertical shift $(y = axis)$ and expansion of x or $z = axis$	8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
	9	0.94	0.99	0.99	1.00	1.00	0.46	0.47	0.86	0.43	0.92	0.94
	10	0.89	0.94	0.95	1.00	1.00	0.51	0.51	-0.05	-0.05	0.88	0.90
	11	0.65	0.97	0.97	-0.13	1.00	0.84	0.92	1.00	1.00	1.00	1.00
Linear or rotational horizontal	12	0.95	1.00	1.00	-0.33	1.00	0.65	0.71	1.00	1.00	1.00	1.00
shifts of the upper or lower face	13	0.84	1.00	1.00	-0.01	1.00	0.92	0.97	1.00	1.00	1.00	1.00
	14	0.67	1.00	1.00	-0.14	1.00	0.60	0.64	1.00	1.00	1.00	1.00
Progressive horizontal shifts of	15	0.76	1.00	1.00	-0.18	1.00	0.88	0.94	1.00	1.00	1.00	1.00
specific regions (e.g. mouth, nose,	16	0.61	1.00	1.00	-0.04	1.00	0.92	0.97	1.00	1.00	1.00	1.00
eyes)	17	0.83	1.00	1.00	-0.47	1.00	0.76	0.84	1.00	1.00	1.00	1.00
Quadratic distortions limited both vertically and horizontally from specific landmarks	18	0.12	0.98	0.97	-0.25	1.00	0.82	0.90	1.00	1.00	1.00	1.00
	19	0.37	1.00	1.00	0.07	1.00	0.91	0.97	1.00	1.00	1.00	1.00
	20	-0.53	0.27	0.09	-0.44	-0.42	0.97	1.00	1.00	1.00	0.98	0.97
	21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
	22	0.72	1.00	1.00	-0.51	-0.33	0.84	0.91	1.00	1.00	0.94	0.94
Combinations of quadratic distortion and axes expansion	23	0.70	0.62	0.75	0.27	0.28	0.92	0.92	0.97	0.97	0.99	0.99
	24	0.95	0.85	0.86	0.96	0.95	-0.07	-0.18	-0.77	-0.76	0.67	0.84
	25	-0.08	0.78	-0.38	0.92	0.92	0.27	0.29	0.89	0.88	0.90	0.91

	Landmarks			Mid	line	Whole surface				Mixed	
	TMS	LMedS	DW-LMedS	TWS	LMedS	LMS	CW-LMS	LMedS	DW-LMedS	HM-LMedS	HM-DW-LMedS
1	0.92	0.95	0.94	1.00	1.00	-0.15	-0.17	-0.93	-0.92	0.82	0.87
2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
5	0.95	0.99	1.00	1.00	1.00	0.48	0.50	0.87	0.86	0.93	0.94
6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
9	0.94	0.99	0.99	1.00	1.00	0.46	0.47	0.86	0.43	0.92	0.94
10	0.89	0.94	0.95	1.00	1.00	0.51	0.51	-0.05	-0.05	0.88	0.90
11	0.65	0.97	0.97	-0.13	1.00	0.84	0.92	1.00	1.00	1.00	1.00
12	0.95	1.00	1.00	-0.33	1.00	0.65	0.71	1.00	1.00	1.00	1.00
13	0.84	1.00	1.00	-0.01	1.00	0.92	0.97	1.00	1.00	1.00	1.00
14	0.67	1.00	1.00	-0.14	1.00	0.60	0.64	1.00	1.00	1.00	1.00
15	0.76	1.00	1.00	-0.18	1.00	0.88	0.94	1.00	1.00	1.00	1.00
16	0.61	1.00	1.00	-0.04	1.00	0.92	0.97	1.00	1.00	1.00	1.00
17	0.83	1.00	1.00	-0.47	1.00	0.76	0.84	1.00	1.00	1.00	1.00
18	0.12	0.98	0.97	-0.25	1.00	0.82	0.90	1.00	1.00	1.00	1.00
19	0.37	1.00	1.00	0.07	1.00	0.91	0.97	1.00	1.00	1.00	1.00
20	-0.53	0.27	0.09	-0.44	-0.42	0.97	1.00	1.00	1.00	0.98	0.97
21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
22	0.72	1.00	1.00	-0.51	-0.33	0.84	0.91	1.00	1.00	0.94	0.94
23	0.70	0.62	0.75	0.27	0.28	0.92	0.92	0.97	0.97	0.99	0.99
24	0.95	0.85	0.86	0.96	0.95	-0.07	-0.18	-0.77	-0.76	0.67	0.84
25	-0.08	0.78	-0.38	0.92	0.92	0.27	0.29	0.89	0.88	0.90	0.91

	Landmarks			Mid	lline		Whole	Mixed			
	TMS	LMedS	Sp.a.LMedS	TWS	LMedS	LMS	CW-LMS	LMedS	DW-LMedS	HM-LMedS	HM-DW-LMedS
1	0.92	0.95	0.94	1.00	1.00					0.82	0.87
2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
5	0.95	0.99	1.00	1.00	1.00	0.48	0.50	0.87	0.86	0.93	0.94
6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
9	0.94	0.99	0.99	1.00	1.00	0.46	0.47	0.86	0.43	0.92	0.94
10	0.89	0.94	0.95	1.00	1.00	0.51	0.51			0.88	0.90
11	0.65	0.97	0.97		1.00	0.84	0.92	1.00	1.00	1.00	1.00
12	0.95	1.00	1.00		1.00	0.65	0.71	1.00	1.00	1.00	1.00
13	0.84	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
14	0.67	1.00	1.00		1.00	0.60	0.64	1.00	1.00	1.00	1.00
15	0.76	1.00	1.00		1.00	0.88	0.94	1.00	1.00	1.00	1.00
16	0.61	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
17	0.83	1.00	1.00		1.00	0.76	0.84	1.00	1.00	1.00	1.00
18	0.12	0.98	0.97		1.00	0.82	0.90	1.00	1.00	1.00	1.00
19	0.37	1.00	1.00	0.07	1.00	0.91	0.97	1.00	1.00	1.00	1.00
20		0.27	0.09			0.97	1.00	1.00	1.00	0.98	0.97
21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
22	0.72	1.00	1.00			0.84	0.91	1.00	1.00	0.94	0.94
23	0.70	0.62	0.75	0.27	0.28	0.92	0.92	0.97	0.97	0.99	0.99
24	0.95	0.85	0.86	0.96	0.95					0.67	0.84
25		0.78		0.92	0.92	0.27	0.29	0.89	0.88	0.90	0.91

	Landmarks			Mid	lline	Whole surface				Mixed	
	TWS	LMedS	Sp.a.LMedS	TWS	LMedS	TMS	CW-LMS	LMedS	DW-LMedS	HM-LMedS	HM-DW-LMedS
1	0.92	0.95	0.94	1.00	1.00					0.82	0.87
2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
5	0.95	0.99	1.00	1.00	1.00			0.87	0.86	0.93	0.94
6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
9	0.94	0.99	0.99	1.00	1.00			0.86		0.92	0.94
10	0.89	0.94	0.95	1.00	1.00	0.51	0.51			0.88	0.90
11	0.65	0.97	0.97		1.00	0.84	0.92	1.00	1.00	1.00	1.00
12	0.95	1.00	1.00		1.00	0.65	0.71	1.00	1.00	1.00	1.00
13	0.84	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
14	0.67	1.00	1.00		1.00	0.60	0.64	1.00	1.00	1.00	1.00
15	0.76	1.00	1.00		1.00	0.88	0.94	1.00	1.00	1.00	1.00
16	0.61	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
17	0.83	1.00	1.00		1.00	0.76	0.84	1.00	1.00	1.00	1.00
18		0.98	0.97		1.00	0.82	0.90	1.00	1.00	1.00	1.00
19		1.00	1.00		1.00	0.91	0.97	1.00	1.00	1.00	1.00
20						0.97	1.00	1.00	1.00	0.98	0.97
21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
22	0.72	1.00	1.00			0.84	0.91	1.00	1.00	0.94	0.94
23	0.70	0.62	0.75			0.92	0.92	0.97	0.97	0.99	0.99
24	0.95	0.85	0.86	0.96	0.95					0.67	0.84
25		0.78		0.92	0.92			0.89	0.88	0.90	0.91

	Landmarks			Mid	lline		Whole	Mixed			
	TMS	LMedS	DW-LMedS	TMS	LMedS	TMS	CW-LMS	LMedS	DW-LMedS	HM-LMedS	HM-DW-LMedS
1	0.92	0.95	0.94	1.00	1.00					0.82	0.87
2	0.87	1.00	1.00	1.00	1.00	0.90	0.90	0.97	0.98	0.98	0.99
3	0.73	0.99	1.00	1.00	1.00	0.70	0.77	0.95	0.95	0.96	0.96
4	0.95	1.00	1.00	1.00	1.00	0.67	0.70	0.93	0.94	0.95	0.97
5	0.95	0.99	1.00	1.00	1.00			0.87	0.86	0.93	0.94
6	0.75	0.96	0.95	0.99	0.99	0.64	0.67	0.85	0.88	0.90	0.93
7	0.93	0.98	0.98	0.99	0.99	0.62	0.64	0.84	0.88	0.92	0.94
8	0.54	0.99	1.00	1.00	1.00	0.61	0.65	0.94	0.95	0.95	0.96
9	0.94	0.99	0.99	1.00	1.00			0.86		0.92	0.94
10	0.89	0.94	0.95	1.00	1.00	0.51	0.51			0.88	0.90
11	0.65	0.97	0.97		1.00	0.84	0.92	1.00	1.00	1.00	1.00
12	0.95	1.00	1.00		1.00	0.65	0.71	1.00	1.00	1.00	1.00
13	0.84	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
14	0.67	1.00	1.00		1.00	0.60	0.64	1.00	1.00	1.00	1.00
15	0.76	1.00	1.00		1.00	0.88	0.94	1.00	1.00	1.00	1.00
16	0.61	1.00	1.00		1.00	0.92	0.97	1.00	1.00	1.00	1.00
17	0.83	1.00	1.00		1.00	0.76	0.84	1.00	1.00	1.00	1.00
18		0.98	0.97		1.00	0.82	0.90	1.00	1.00	1.00	1.00
19		1.00	1.00		1.00	0.91	0.97	1.00	1.00	1.00	1.00
20						0.97	1.00	1.00	1.00	0.98	0.97
21	0.87	0.85	0.96	0.83	0.60	0.53	0.56	0.78	0.65	0.93	0.94
22	0.72	1.00	1.00			0.84	0.91	1.00	1.00	0.94	0.94
23	0.70	0.62	0.75			0.92	0.92	0.97	0.97	0.99	0.99
24	0.95	0.85	0.86	0.96	0.95					0.67	0.84
25		0.78		0.92	0.92			0.89	0.88	0.90	0.91

Hybrid methods

Hemispheres + midline (HM-LMedS & HM-DW.LMedS)

- The midline provides complementary performance to surface-based methods
- Large imbalance between the number of surface and midline points

$$\arg\min_{\hat{T}} \left(\operatorname{median} \left\{ \| e_{DW}^{i} \|^{2} \right\}_{\forall i \notin \mathcal{I}_{ML}} + \frac{1}{2} \operatorname{median} \left\{ e_{i}^{2} \right\}_{\forall i \in \mathcal{I}_{ML}} + \sum_{i=1}^{n_{V}} \frac{|e_{i}^{2} - e_{\overline{i}}^{2}|}{n_{V}} \right)$$
$$e_{DW}^{i} = \exp\left(\frac{-1}{\tau} \frac{d_{ML}(\mathbf{v}_{S}^{i})}{\max\left(d_{ML}(\mathbf{v}_{S})\right)}\right) (\mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}}))$$
$$e_{i} = \|\mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}})\|, \quad e_{\overline{i}} = \|\mathbf{v}_{S}^{\overline{i}} - \hat{T}(\mathbf{v}_{M}^{i})\| \qquad \mathcal{I}_{ML} = \left\{ i \in [1; n_{V}] \mid \overline{i} = i \right\}$$

Hybrid methods

Hemispheres + midline (HM-LMedS & HM-DW.LMedS)

- The midline provides complementary performance to surface-based methods
- Large imbalance between the number of surface and midline points

$$\begin{aligned} \arg\min_{\hat{T}} \left(\operatorname{median} \left\{ \| e_{DW}^{i} \|^{2} \right\}_{\forall i \notin \mathcal{I}_{ML}} + \\ &+ \frac{1}{2} \operatorname{median} \left\{ e_{i}^{2} \right\}_{\forall i \in \mathcal{I}_{ML}} + \sum_{i=1}^{n_{V}} \frac{|e_{i}^{2} - e_{\overline{i}}^{2}|}{n_{V}} \right) \\ e_{DW}^{i} &= \exp\left(\frac{-1}{\tau} \frac{d_{ML}(\mathbf{v}_{S}^{i})}{\max\left(d_{ML}(\mathbf{v}_{S})\right)} \right) (\mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}})) \\ e_{i} &= \| \mathbf{v}_{S}^{i} - \hat{T}(\mathbf{v}_{M}^{\overline{i}}) \|, \qquad e_{\overline{i}} = \| \mathbf{v}_{S}^{\overline{i}} - \hat{T}(\mathbf{v}_{M}^{i}) \| \qquad \mathcal{I}_{ML} = \left\{ i \in [1; n_{V}] \, | \, \overline{i} = i \right\} \end{aligned}$$

Conclusions

- We tested different alignment methods for the estimation of point-wise 3D surface asymmetry
 - Important differences between methods
 - Widespread least-squares cost functions performed the worst
 - Landmark-based methods were generally better than methods using the whole surface
- A hybrid approach combining surface and mid-line terms achieved the best performance
 - Exponential decaying of weights as points depart from the midline
 - As a byproduct we get more robustness to the exact definition of face boundaries

A qualitative example estimating the unknown asymmetry of a real scan

Landmarkbased LMS

Midline-based LMS

DW-HM-LMdeS

A qualitative example estimating the unknown asymmetry of a real scan

Landmarkbased LMS

Midline-based LMS

DW-HM-LMdeS

Asymmetry patterns magnified by 2.0 : 1

Thank you for your attention

For more information please visit: <u>http://fsukno.atspace.eu</u>

Craniofacial landmarks

Manual annotations from: R. Hennessy et al. Biol Psychiat 51 (2002) 507-514

Comparison of hemispheres by reflection

Reflection into an arbitrary plane

We can register the mirrored surface with the original

Comparison of hemispheres by reflection

- Reflection into an arbitrary plane
- Alignment of the original and mirrored surfaces
- Straight-forward comparison
 - Left w/ right
 - Right w/ left

Comparison of hemispheres by reflection

- Reflection into an arbitrary plane
- Alignment of the original and mirrored surfaces
- Straight-forward comparison
 - Left w/ right
 - Right w/ left

How do we align both surfaces ?

Alignment of the mid-sagittal plane

- The mid-sagittal plane of the original and mirrored surfaces should be the same
- Hence, making both mid-sagittal planes coincide should align the surfaces

Complex example I

Complex example I

