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 Why Event Recognition?
– Gigantic amount of video data

 need to identify events of interest 

– Indexing/retrieval of video collections

 How Event Recognition?

1. Localization of events (when happened?)

2. Classification of events (what happened?)
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Previous Work

• Most of the previous methods: treat localization 
and classification as separate problems[13, 15]

4

[13] I. Laptev, CVPR, 2008
[15] J. C. Niebles, ICCV, 2010
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Previous Work

• Most of the previous methods: treat localization 
and classification as separate problems[13, 15]

• Recent work: jointly localize and classify events 
of interest in videos[1,2]
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[13] I. Laptev, CVPR, 2008
[15] J. C. Niebles, ICCV, 2010

[1] M. Hoai et al., CVPR, 2013
[2] Y. Cheng  et al., CVPR, 2014
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Novelty of Proposed Method
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The novelty of our work is that we introduce 
the modeling of two kinds of 
event transition information:
1. Event transition segments

2. Event transition probabilities
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Proposed Method: Event Transition

• Event Transition Segments: capture the
occurrence patterns between two consecutive 
events of interest

• Event Transition Probabilities: model the 
transition probability between the two events
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Why Event Transition Information?

• Facial expression recognition [7, 11, 23]:
– Onset, offset modeling

• Human action event recognition: 
– Unique, distinguishable transitions
– Importance of transition patterns
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[7] X. Ding et al., ICCV, 2003
[11] S. Koelstra et al., IEEE PAMI, 2010
[23] M. Valstar and M. Pantic, IEEE SMC, 2012



9

Contributions of Our Work

• Proposed a temporal segmentation and 
classification method using transition patterns 
between events of interest

• Improved the human action detection accuracy 
of two datasets: Smartroom and CMU-MAD[10]

• Demonstrated the importance of transition 
patterns to detect human action events

9
[10] CMU-MAD Database: D. Huang et al., ECCV, 2014.



10

PROPOSED METHOD
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Proposed Method

1. Extract per-frame human pose cues 
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2. Calculate variable-length segment-level features

CC CC TF TF AH★ ★ ★ ★ ★ ★     AHCC CC TF TF AH★ ★ ★ ★ ★ ★     AH
s1 s2 s3 s4 s5 … … s24s25 s26

3.  Train segment-SVM[1] learned weights

[1] M. Hoai et al., CVPR, 2013

i-th training video:

Training Phase

…
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Proposed Method
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Estimated 
Segmentation CC CC TF TF AH★ ★ ★ ★ ★ ★     AHCC CC TF TF AH★ ★ ★ ★ ★ ★     AH

Input:
Video:

Output:

Segment points:
Segment labels:

Number of segments: 
Normal (N)

Crossing arms on 
chest (CC)

Touching face (TF)

Arms on hips (AH)

Onset of CC,TF,AH

Offset of CC,TF,AH

s
1

s
2

s
3

s
4

s
5

… … s24s25 s26

Testing Phase
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Proposed Method
•

– Segmentation goal:

– Dynamic Programming-based Inference: for           ,

13

(Hoai et al. CVPR 2013)(Our Proposed Method)

✜

Testing Phase



14

EXPERIMENTAL RESULTS
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Data: Smartroom and CMU-MAD
• Smartroom Dataset: suspicious behavior 

recognition

• CMU-MAD Dataset[10]: Human action dataset
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Clean Noisy Body pose cues[19]

[10] D. Huang et al., ECCV, 2014. [19] B. Sapp and B. Taskar, CVPR, 2013.
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Performance Measure

• Compare the performance to [Hoai et al., 2011]
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Performance Measure

• Frame-level and event-level recognition rates:
1. Frame-level recognition rate

2. Event-level recognition rate[10]: the ratio of event 
segments that are correctly identified, by counting 
the number of correct frames that overlaps with 50% 
of a segment. 

17[10] D. Huang et al., ECCV, 2014.



18

Experimental Results: Smartroom
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• Clean

• Noisy
≈

≈
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Experimental Results: CMU-MAD
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≈

1. CMU-MAD: the transition segments were not explicitly labeled 
(performance gain: frame-level > event-level)

2. Difference in visual features (w/ vs. without depth)
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Conclusions

• Explicitly model event transition segments
• Improve the state-of-art performance on the joint 

localization and classification of video events
• Future Work: 

– automatic methods that can learn the transition 
probabilities of the full set of pairwise event 
transitions.

– Segmentation and classification of audio-visual cues

20
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Thank You!
Questions?

yelinkim@umich.edu
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