Modeling Transition Patterns Between Events for Temporal Human Action Segmentation and Classification

<u>Yelin Kim</u>¹, Jixu Chen², Ming-Ching Chang², Xin Wang³, Emily Mower Provost¹, and Siwei Lyu³

> University of Michigan, Ann Arbor¹ GE Global Research² State University of New York, Albany³

Photo by Ludovic Bertron

Why Event Recognition?

- Gigantic amount of video data
 - \rightarrow need to identify events of interest
- Indexing/retrieval of video collections

How Event Recognition?

- 1. Localization of events (*when happened?*)
- 2. Classification of events (what happened?)

Previous Work

Video

	Crossing Arms On Chest	Touching Nose	
_		Time —	>

 Most of the previous methods: treat localization and classification as separate problems^[13, 15]

Previous Work

Video

 Crossing Arms On Chest	Touching Nose	
	Time —	>

- Most of the previous methods: treat localization and classification as separate problems^[13, 15]
- Recent work: jointly localize and classify events of interest in videos^[1,2]

Novelty of Proposed Method

The novelty of our work is that we introduce the modeling of two kinds of event transition information:
1. Event transition segments
2. Event transition probabilities

Proposed Method: Event Transition

- Event Transition Segments: capture the occurrence patterns between two consecutive events of interest
- Event Transition Probabilities: model the transition probability between the two events

Why Event Transition Information?

- Facial expression recognition ^[7, 11, 23]:
 - Onset, offset modeling
- Human action event recognition:
 - Unique, distinguishable transitions
 - Importance of transition patterns

[7] X. Ding et al., ICCV, 2003
[11] S. Koelstra et al., IEEE PAMI, 2010
[23] M. Valstar and M. Pantic, IEEE SMC, 2012 ⁸

Contributions of Our Work

- Proposed a temporal segmentation and classification method using transition patterns between events of interest
- Improved the human action detection accuracy of two datasets: Smartroom and CMU-MAD^[10]
- Demonstrated the importance of transition patterns to detect human action events

PROPOSED METHOD

Proposed Method

Training Phase

i-th training video:

- 1. Extract per-frame human pose cues
- 2. Calculate variable-length segment-level features

3. Train segment-SVM^[1] \longrightarrow learned weights w_y

[1] M. Hoai et al., CVPR, 2013 11

Proposed Method

12

S S Offset of CC,TF,AH

Proposed Method

- Dynamic Programming-based Inference: for $X_{(0,w]}$ f(u) = f

$$+ (1+\gamma) \log P(y_k|y_{k-1})$$

EXPERIMENTAL RESULTS

Data: Smartroom and CMU-MAD

Smartroom Dataset: suspicious behavior recognition

Clean

Noisy

Body pose cues^[19]

• CMU-MAD Dataset^[10]: Human action dataset

[10] D. Huang et al., ECCV, 2014. [19] B. Sapp and B. Taskar, CVPR, 2013. 15

Performance Measure

• Compare the performance to [Hoai et al., 2011]

n hips (AH) Onset of CC,TF,AH Offset of CC,TF,AH

 \otimes

Performance Measure

- Frame-level and event-level recognition rates:
 - 1. Frame-level recognition rate
 - 2. Event-level recognition rate^[10]: the ratio of event segments that are correctly identified, by counting the number of correct frames that overlaps with 50% of a segment.

Experimental Results: Smartroom

• Clean

Frame-level							Event-level						
Prec		Rec		F-mea		Prec		Rec		F-mea			
Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std		
83.84	7.45	80.41	12.18	81.95	9.52	86.67	11.55	89.63	10.02	88.07	10.54		
56.19	5.32	60.50	7.98	58.15	5.74	71.11	7.70	67.41	12.24	68.32	3.86		
27.65		19.91		23.79		15.55		22.22		19.75			
	Pre Mean 83.84 56.19 27.65	Prec Mean Std 83.84 7.45 56.19 5.32 27.65	Prec Ro Mean Std Mean 83.84 7.45 80.41 56.19 5.32 60.50 27.65 19.91	Prec Rec Mean Std Mean Std 83.84 7.45 80.41 12.18 56.19 5.32 60.50 7.98 27.65 19.91	Frame-level Prec Rec F-m Mean Std Mean Std 83.84 7.45 80.41 12.18 81.95 56.19 5.32 60.50 7.98 58.15 27.65 19.91 23.79	Frame-level Prec Rec F-mea Mean Std Mean Std 83.84 7.45 80.41 12.18 81.95 9.52 56.19 5.32 60.50 7.98 58.15 5.74 27.65 19.91 23.79 23.79	Frame-level Prec Rec F-mea Pr Mean Std Mean Std Mean Mean 83.84 7.45 80.41 12.18 81.95 9.52 86.67 56.19 5.32 60.50 7.98 58.15 5.74 71.11 27.65 19.91 23.79 15.55	Frame-level Prec Rec F-mea Prec Mean Std Mean Std Mean Std 83.84 7.45 80.41 12.18 81.95 9.52 86.67 11.55 56.19 5.32 60.50 7.98 58.15 5.74 71.11 7.70 27.65 19.91 23.79 15.55	Frame-level Event $Prec$ Rec $F-mea$ $Prec$ Rec <th>Frame-level Event-level $Prec$ Rec $F-mea$ $Prec$ Rec Mean Std Mean Std Mean Std Mean Std 83.84 7.45 80.41 12.18 81.95 9.52 86.67 11.55 89.63 10.02 56.19 5.32 60.50 7.98 58.15 5.74 71.11 7.70 67.41 12.24 27.65 19.91 23.79 15.55 22.22</th> <th>Frame-level Event-level $Prec$ Rec $F-mea$ $Prec$ Rec $F-mea$ Mean Std Mean Std Mean Std Mean Std Mean Mean 83.84 7.45 80.41 12.18 81.95 9.52 86.67 11.55 89.63 10.02 88.07 56.19 5.32 60.50 7.98 58.15 5.74 71.11 7.70 67.41 12.24 68.32 27.65 19.91 23.79 15.55 22.22 19.75</th>	Frame-level Event-level $Prec$ Rec $F-mea$ $Prec$ Rec Mean Std Mean Std Mean Std Mean Std 83.84 7.45 80.41 12.18 81.95 9.52 86.67 11.55 89.63 10.02 56.19 5.32 60.50 7.98 58.15 5.74 71.11 7.70 67.41 12.24 27.65 19.91 23.79 15.55 22.22	Frame-level Event-level $Prec$ Rec $F-mea$ $Prec$ Rec $F-mea$ Mean Std Mean Std Mean Std Mean Std Mean Mean 83.84 7.45 80.41 12.18 81.95 9.52 86.67 11.55 89.63 10.02 88.07 56.19 5.32 60.50 7.98 58.15 5.74 71.11 7.70 67.41 12.24 68.32 27.65 19.91 23.79 15.55 22.22 19.75		

• Noisy

			Fram	e-level		Event-level						
	Prec		Rec		F-mea		Prec		Rec		F-mea	
Method	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
Ours Hoai	44.41	18.85 11.54	40.38 13.60	18.20 6.88	41.33 17.26	17.09 8.33	25.36 14.33	16.36 14.93	54.45 11.20	15.91 6.81	33.51 11.75	17.93 10.56
Diff	20.02	11.01	26.78	0.00	24.07	0.00	11.03	111/0	43.24	0101	21.76	10.00

Experimental Results: CMU-MAD

	GT	-								-		
	Ours	S -										
	Hoa	i -								-		
		1 5	500 10	000 1	1500 20	000 2	2500 30	00 35	00 400	0		
			Frame	-level		2.07			Event	-level		
	Prec Rec F-mea						Pr	Prec Rec			F-mea	
Method	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
Ours	85.00	8.82	71.41	7.25	77.41	7.01	74.40	15.02	85.02	12.17	78.83	12.95
Hoai	73.79	9.62	70.57	9.96	71.87	8.70	73.45	15.84	83.88	13.06	77.85	14.23
Diff	11.21		0.84		5.54		_0.95		1.14		0.98	

- 1. CMU-MAD: the transition segments were not explicitly labeled (performance gain: frame-level > event-level)
- 2. Difference in visual features (w/ vs. without depth)

Conclusions

- Explicitly model event transition segments
- Improve the state-of-art performance on the joint localization and classification of video events
- Future Work:
 - automatic methods that can learn the transition probabilities of the full set of pairwise event transitions.
 - Segmentation and classification of audio-visual cues

Acknowledgements

- Morpho Detection LLC.
- Dr. Peter Tu
- Dr. Guiju Song
- Computer Vision Lab, GE Global Research

Thank You! Questions? yelinkim@umich.edu