Multi-view Discriminant Analysis with Tensor Representation and Its Application to Cross-view Gait Recognition

Yasushi Makihara ${ }^{\dagger}$, Al Mansur ${ }^{\dagger}$, Daigo Muramatsu ${ }^{\ddagger \dagger}$, Zasim Uddin ${ }^{\dagger}$, Yasushi Yagi ${ }^{\dagger}$
\dagger Osaka University
\ddagger National Institute of Information and Communications Technology

Background

- Cross-view recognition

Face recognition ${ }^{[1]}$

Gait recognition [Yu et al. 2006]

Background

- Cross-view recognition

Discriminant analysis

\checkmark Cross-view property

Background

■ Cross-view recognition

Face recognition ${ }^{[1]}$

Gait recognition [Yu et al. 2006]

Discriminant analysis
\checkmark Cross-view property
\checkmark Small sample size (SSS) problem

Related work

Method	Cross-view	SSS problem

Related work

| Method | Cross-view | SSS problem |
| :--- | :--- | :--- | :--- |
| Multi-view discriminant analysis (MvDA) | | |
| [Kan et al. 2012] | | |

Related work

| Method | Cross-view | SSS problem |
| :--- | :--- | :--- | :--- |
| Multi-view discriminant analysis (MvDA) | | |
| [Kan et al. 2012] | | |

Related work

| Method | Cross-view | SSS problem |
| :--- | :--- | :--- | :--- |
| Multi-view discriminant analysis (MvDA)
 [Kan et al. 2012] | | |
| | | |

Related work

Method	Cross-view	SSS problem
Multi-view discriminant analysis (MvDA) [Kan et al. 2012]	\checkmark	X
Discriminant analysis with tensor representation (DATER) [Yan et al. 2005]		

Related work

Method	Cross-view	SSS problem
Multi-view discriminant analysis (MvDA) [Kan et al. 2012]	\checkmark	X
Discriminant analysis with tensor representation (DATER) [Yan et al. 2005]		\checkmark

Related work

Method	Cross-view	SSS problem
Multi-view discriminant analysis (MvDA) [Kan et al. 2012]	\checkmark	X
Discriminant analysis with tensor representation (DATER) [Yan et al. 2005]	X	\checkmark

Related work

Method	Cross-view	SSS problem
Multi-view discriminant analysis (MvDA) [Kan et al. 2012]	\checkmark	X
Discriminant analysis with tensor representation (DATER) [Yan et al. 2005]	X	\checkmark
Proposed method	\checkmark	\checkmark

Objective

■ MvDATER: Multi-view Discriminant Analysis with TEnsor Representation

MvDATER

Common discriminant subspace

Objective

- MvDATER: Multi-view Discriminant Analysis with TEnsor Representation

Multi-view projections

Objective

- MvDATER: Multi-view Discriminant Analysis with TEnsor Representation
$\xrightarrow{\substack{\text { Mode } 3(t) \\ \text { Mode } 1(y) \\ \text { Mode } 2(x)}}$

Multi-view projections + Multi-mode projections

Objective

- MvDATER: Multi-view Discriminant Analysis with TEnsor Representation
$\xrightarrow{\substack{\text { Mode } 3(t) \\ \text { Mode } 1(y) \\ \text { Mode } 2(x)}}$

Multi-mode projections

Tensor representation (1)

■ L-th order tensor object
$A \in \mathbf{R}^{M_{1} \times \cdots \times M_{L}} \quad M_{l}$: l-th mode dimension
$A\left(m_{1}, \cdots, m_{L}\right)$: Tensor component

Tensor representation (1)

- L-th order tensor object
$A \in \mathbf{R}^{M_{1} \times \cdots \times M_{L}} \quad M_{l}$: l-th mode dimension
$A\left(m_{1}, \cdots, m_{L}\right)$: Tensor component

3rd order tensor object

Tensor representation (1)

- L-th order tensor object
$A \in \mathbf{R}^{M_{1} \times \ldots \times M_{L}} \quad M_{l}$: l-th mode dimension
$A\left(m_{1}, \cdots, m_{L}\right)$: Tensor component

3rd order tensor object
\square Inner product
$\langle A, B\rangle=\sum_{m_{1}=1}^{M_{1}} \cdots \sum_{m_{L}=1}^{M_{L}} A\left(m_{1}, \cdots, m_{L}\right) B\left(m_{1}, \cdots, m_{L}\right)$

Tensor representation (1)

- L-th order tensor object
$A \in \mathbf{R}^{M_{1} \times \ldots \times M_{L}} \quad M_{l}$: l-th mode dimension
$A\left(m_{1}, \cdots, m_{L}\right)$: Tensor component

3rd order tensor object
\square Inner product
Frobenius norm
$\langle A, B\rangle=\sum_{m_{1}=1}^{M_{1}} \cdots \sum_{m_{L}=1}^{M_{L}} A\left(m_{1}, \cdots, m_{L}\right) B\left(m_{1}, \cdots, m_{L}\right) \quad\|A\|_{F}=\sqrt{\langle A, A\rangle}$

Tensor representation (2)

- l-mode product of tensor X by matrix U_{l}
$Y=X \times_{l} U_{1}$

Tensor representation (2)

- l-mode product of tensor X by matrix U_{l}

$$
\begin{aligned}
& Y=X \times_{l} U_{l} \\
& Y\left(m_{1}, \cdots, m_{l-1}, m_{l}^{\prime}, m_{l+1}, \cdots, m_{L}\right)=\sum_{m_{l}=1}^{M_{l}} X\left(m_{1}, \cdots, m_{l-1}, m_{l}, m_{l+1}, \cdots, m_{L}\right) U_{l}\left(m_{l}, m_{l}^{\prime}\right)
\end{aligned}
$$

Tensor representation (2)

- l-mode product of tensor X by matrix U_{l}

$$
Y=X \times_{l} U_{1}
$$

$$
Y\left(m_{l}, \cdots, m_{l-1}, m_{l}^{\prime}, m_{l+1}, \cdots, m_{L}\right)=\sum_{m_{l}=1}^{M_{l}} X\left(m_{1}, \cdots, m_{l-1}, m_{l}, m_{l+1}, \cdots, m_{L}\right) U_{l}\left(m_{l}, m_{l}^{\prime}\right)
$$

1-mode product for 3rd order tensor object

Tensor representation (2)

- l-mode product of tensor X by matrix U_{l}

$$
Y=X \times_{l} U_{1}
$$

$$
Y\left(m_{l}, \cdots, m_{l-1}, m_{l}^{\prime}, m_{l+1}, \cdots, m_{L}\right)=\sum_{m_{l}=1}^{M_{l}} X\left(m_{1}, \cdots, m_{l-1}, m_{l}, m_{l+1}, \cdots, m_{L}\right) U_{l}\left(m_{l}, m_{l}^{\prime}\right)
$$

1-mode product for 3rd order tensor object

Tensor representation (2)

- l-mode product of tensor X by matrix U_{l}

$$
Y=X \times_{l} U_{1}
$$

$$
Y\left(m_{1}, \cdots, m_{l-1}, m_{l}^{\prime}, m_{l+1}, \cdots, m_{L}\right)=\sum_{m_{l}=1}^{m_{1}} X\left(m_{1}, \cdots, m_{l-1}, m_{l}, m_{l+1}, \cdots, m_{L}\right) U_{l}\left(m_{l}, m_{l}^{\prime}\right)
$$

1-mode product for 3rd order tensor object

Tensor representation (2)

- l-mode product of tensor X by matrix U_{l}

$$
Y=X \times_{l} U_{1}
$$

$$
Y\left(m_{l}, \cdots, m_{l-1}, m_{l}^{\prime}, m_{l+1}, \cdots, m_{L}\right)=\sum_{m_{l}=1}^{M_{l}} X\left(m_{1}, \cdots, m_{l-1}, m_{l}, m_{l+1}, \cdots, m_{L}\right) U_{l}\left(m_{l}, m_{l}^{\prime}\right)
$$

1-mode product for 3rd order tensor object

Tensor representation (2)

■ l-mode product of tensor X by matrix U_{I}

$$
Y=X \times_{l} U_{1}
$$

$$
Y\left(m_{l}, \cdots, m_{l-1}, m_{l}^{\prime}, m_{l+1}, \cdots, m_{L}\right)=\sum_{m_{l}=1}^{M_{l}} X\left(m_{1}, \cdots, m_{l-1}, m_{l}, m_{l+1}, \cdots, m_{L}\right) U_{l}\left(m_{l}, m_{l}^{\prime}\right)
$$

1-mode product for 3rd order tensor object

$$
M_{l}^{\prime}<M_{l} \quad \text { l-mode dimension reduction }
$$

Multi-view multi-mode projections

- Multi-mode projections into low dimensional space

$$
\begin{aligned}
Y & =X \times_{1} U_{1} \cdots x_{L} U_{L} \\
\overparen{Y} & =X \times \times_{1} \quad U_{1}
\end{aligned} \cdots \times_{L} U_{L}
$$

Multi-view multi-mode projections

■ Multi-mode projections into low dimensional space

$$
Y=X \times_{1} U_{1} \cdots \times_{L} U_{L}
$$

$$
\overparen{Y}=\square \times_{1} \boxed{U_{1}} \cdots \times \times_{L} \left\lvert\, \begin{array}{|c|c}
U_{L} \\
\hline
\end{array}\right.
$$

Extend to multiple views

$$
\begin{array}{r}
\mathbf{U}=\left\{\bar{U}_{l, j}\right\} \\
\}\left(l=1, \ldots, L, j=1, \ldots, N_{V}\right) \\
\text { Mode index View index }
\end{array}
$$

Multi-view multi-mode projections

■ Multi-mode projections into low dimensional space

$$
\begin{aligned}
& Y=X \times_{1} U_{1} \cdots \times_{L} U_{L} \\
& \boxed{Y}=\overparen{X} \times_{1} \boxed{U_{1}} \cdots \times_{L} \left\lvert\, \begin{array}{|l|l}
U_{L} \\
\hline
\end{array}\right. \\
& \text { Extend to multiple views } \\
& \begin{array}{r}
\mathbf{U}=\left\{\bar{U}_{l, j}\right\} \\
\}=1, \ldots, L, j=1, \ldots, N_{V}\right) \\
\text { Mode index } \quad \text { View index }
\end{array} \\
& Y_{i j k}=X_{i j k} \times{ }_{1} U_{1, j} \cdots \times_{L} U_{L, j} \\
& i \text { : Class index (} i=1, \ldots, n_{c} \text {) } \\
& k \text { : Sample index of class } i \text { from view } j\left(k=1, \ldots, n_{i j}\right)
\end{aligned}
$$

Discriminant tensor criterion

- Ratio of between-class and within-class scatter

$$
\mathbf{U}^{*}=\underset{\mathbf{U}}{\arg \max } \frac{\sum_{i=1}^{N_{C}} n_{i}\left\|\bar{Y}_{i}-\bar{Y}\right\|_{F}^{2}}{\sum_{i=1}^{N_{C}} \sum_{j=1}^{N_{V}} \sum_{k=1}^{n_{i j}}\left\|Y_{i j k}-\bar{Y}_{i}\right\|_{F}^{2}}
$$

Discriminant tensor criterion

- Ratio of between-class and within-class scatter

$$
\mathbf{U}^{*}=\underset{\mathbf{U}}{\arg \max } \frac{\sum_{i=1}^{N_{C}} n_{i}\left\|\bar{Y}_{i}-\bar{Y}\right\|_{F}^{2}}{\sum_{i=1}^{N_{C}} \sum_{j=1}^{N_{V}} \sum_{k=1}^{n_{i j}}\left\|Y_{i j k}-\overline{Y_{i}}\right\|_{F}^{2}}
$$

Substitute projection matrices

$$
\mathbf{U}^{*}=\underset{\mathbf{U}}{\arg \max } \frac{\sum_{i=1}^{N_{c}} n_{i} \| \sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}\right)-\sum_{q=1}^{N_{c}} w_{q} \sum_{r=1}^{N_{v}} w_{q r}\left(\bar{X}_{q r} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r} \|_{F}^{2}\right.}{\sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{v}} \sum_{k=1}^{n_{i j}} \| X_{i j k} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}-\sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r} \|_{F}^{2}\right.}
$$

Discriminant tensor criterion

- Ratio of between-class and within-class scatter

$$
\begin{aligned}
& \mathbf{U}^{*}=\underset{\mathbf{U}}{\arg \max } \frac{\sum_{i=1}^{N_{C}} n_{i}\left\|\bar{Y}_{i}-\bar{Y}\right\|_{F}^{2}}{\sum_{i=1}^{N_{C}} \sum_{j=1}^{N_{V}} \sum_{k=1}^{n_{i j}}\left\|Y_{i j k}-\bar{Y}_{i}\right\|_{F}^{2}} \\
& \text { Substitute projection matrices } \\
& \mathbf{U}^{*}=\underset{\mathbf{U}}{\arg \max } \frac{\sum_{i=1}^{N_{c}} n_{i}\left\|\sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} \times_{1} U_{1, r} \cdots x_{L} U_{L, r}\right)-\sum_{q=1}^{N_{c}} w_{q} \sum_{r=1}^{N_{v}} w_{q r}\left(\bar{X}_{q r} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}\right)\right\|_{F}^{2}}{\sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{v}} \sum_{k=1}^{n_{V}}\left\|X_{i j k} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}-\sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}\right)\right\|_{F}^{2}}
\end{aligned}
$$

No closed-form solution due to higher order tensor structure

Discriminant tensor criterion

$$
\mathbf{U}^{*}=\underset{\mathbf{U}}{\arg \max } \frac{\sum_{i=1}^{N_{c}} n_{i}\left\|\sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} \times_{1} U_{1, r} \cdots x_{L} U_{L, r}\right)-\sum_{q=1}^{N_{c}} w_{q} \sum_{r=1}^{N_{v}} w_{q r}\left(\bar{X}_{q r} \times_{1} U_{1, r} \cdots x_{L} U_{L, r}\right)\right\|_{F}^{2}}{\sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{v}} \sum_{k=1}^{n_{i j}}\left\|X_{i j k} x_{1} U_{1, r} \cdots x_{L} U_{L, r}-\sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} \times_{1} U_{1, r} \cdots x_{L} U_{L, r}\right)\right\|_{F}^{2}}
$$

l-mode discriminant analysis

l-mode discriminant analysis

$$
\mathbf{U}^{*}=\underset{\mathbf{U}}{\arg \max } \frac{\sum_{i=1}^{N_{c}} n_{i}\left\|\sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}\right)-\sum_{q=1}^{N_{c}} w_{q} \sum_{r=1}^{N_{v}} w_{q r}\left(\bar{X}_{q r} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}\right)\right\|_{F}^{2}}{\sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{V}} \sum_{k=1}^{n_{j i}}\left\|X_{i j k} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}-\sum_{r=1}^{N_{V}} w_{i r}\left(\bar{X}_{i r} \times_{1} U_{1, r} \cdots \times_{L} U_{L, r}\right)\right\|_{F}^{2}}
$$

Focus only on 1 -th mode product

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\sum_{i=1}^{N_{c}} n_{i}\left\|\sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} x_{l} U_{l, r}\right)-\sum_{q=1}^{N_{c}} w_{q} \sum_{r=1}^{N_{v}} w_{q r}\left(\bar{X}_{q r} \times{ }_{l} U_{l, r}\right)\right\|}{\sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{v}} \sum_{k=1}^{n_{i j}} \| X_{i j k} x_{l} U_{l, j}-\sum_{r=1}^{N_{v}} w_{i r}\left(\bar{X}_{i r} x_{l} U_{l, r} \|_{F}^{2}\right.}
$$

l-mode discriminant analysis

$$
\mathbf{U}^{*}=\underset{\mathbf{U}}{\arg \max } \frac{\sum_{i=1}^{N_{C}} n_{i}\left\|\sum_{r=1}^{N_{V}} w_{i r}\left(\bar{X}_{i r} \times U_{1, r} \cdots \times_{L} U_{L, r}\right)-\sum_{q=1}^{N_{C}} w_{q} \sum_{r=1}^{N_{V}} w_{q r}\left(\bar{X}_{q r} \times{ }_{1} U_{1, r} \cdots \times_{L} U_{L, r}\right)\right\|_{F}^{2}}{\sum_{i=1}^{N_{C}} \sum_{j=1}^{N_{V}} \sum_{k=1}^{n_{i j}}\left\|X_{i j k} \times{ }_{1} U_{1, r} \cdots \times_{L} U_{L, r}-\sum_{r=1}^{N_{V}} w_{i r}\left(\bar{X}_{i r} \times U_{1, r} \cdots \times_{L} U_{L, r}\right)\right\|_{F}^{2}}
$$

Focus only on l-th mode product

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\sum_{i=1}^{N_{C}} n_{i}\left\|\sum_{r=1}^{N_{V}} w_{i r}\left(\bar{X}_{i r} \times_{l} U_{l, r}\right)-\sum_{q=1}^{N_{C}} w_{q} \sum_{r=1}^{N_{V}} w_{q r}\left(\bar{X}_{q r} \times_{l} U_{l, r}\right)\right\|}{\sum_{i=1}^{N_{C}} \sum_{j=1}^{N_{V}} \sum_{k=1}^{n_{i j}}\left\|X_{i j k} \times_{l} U_{l, j}-\sum_{r=1}^{N_{V}} w_{i r}\left(\bar{X}_{i r} \times_{l} U_{l, r}\right)\right\|_{F}^{2}}
$$

Rearrange (see proceeding for detailed derivation)

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{B, r s}^{(l)} U_{l, s}\right)}{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{W, r s}^{(l)} U_{l, s}\right)}
$$

l-mode discriminant analysis

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}^{T} S_{B, r s}^{(l)} U_{l, s}\right)}{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{W, r s}^{(l)} U_{l, s}\right)}
$$

l-mode discriminant analysis

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{B, r s}^{(l)} U_{l, s}\right)}{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{W, r s}^{(l)} U_{l, s}\right)}
$$

Concatenate multi-view projection matrices

$$
U_{l}=\left[\begin{array}{c}
U_{l, 1} \\
\vdots \\
U_{l, N_{V}}
\end{array}\right] S_{W}^{(l)}=\left[\begin{array}{ccc}
S_{W, 11}^{(l)} & \cdots & S_{W, 1 N_{V}}^{(l)} \\
\vdots & \ddots & \vdots \\
S_{W, N_{v} 1}^{(l)} & \cdots & S_{W, N_{v} N_{V}}^{(l)}
\end{array}\right] S_{B}^{(l)}=\left[\begin{array}{ccc}
S_{B, 11}^{(l)} & \cdots & S_{B, 1 N_{v}}^{(l)} \\
\vdots & \ddots & \vdots \\
S_{B, N_{v} 1}^{(l)} & \cdots & S_{B, N_{v} N_{v}}^{(l)}
\end{array}\right]
$$

l-mode discriminant analysis

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{B, r s}^{(l)} U_{l, s}\right)}{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{W, r s}^{(l)} U_{l, s}\right)}
$$

Concatenate multi-view projection matrices
$\left.U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(U_{l}^{T} S_{B}^{(l)} U_{l}\right)}{\operatorname{Tr}\left(U_{l}^{T} S_{W}^{(l)} U_{l}\right)}\right] U_{l}=\left[\begin{array}{c}U_{l, 1} \\ \vdots \\ U_{l, N_{V}}\end{array}\right] S_{W}^{(l)}=\left[\begin{array}{ccc}S_{W, 11}^{(l)} & \cdots & S_{W, 1 N_{V}}^{(l)} \\ \vdots & \ddots & \vdots \\ S_{W, N_{V} 1}^{(l)} & \cdots & S_{W, N_{V} N_{V}}^{(l)}\end{array}\right] S_{B}^{(l)}=\left[\begin{array}{ccc}S_{B, 11}^{(l)} & \cdots & S_{B, 1 N_{V}}^{(l)} \\ \vdots & \ddots & \vdots \\ S_{B, N_{V} 1}^{(l)} & \cdots & S_{B, N_{V} N_{V}}^{(l)}\end{array}\right]$

l-mode discriminant analysis

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{B, r s}^{(l)} U_{l, s}\right)}{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{W, r s}^{(l)} U_{l, s}\right)}
$$

Concatenate multi-view projection matrices
$\left.U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(U_{l}^{T} S_{B}^{(l)} U_{l}\right)}{\operatorname{Tr}\left(U_{l}^{T} S_{W}^{(l)} U_{l}\right)}\right] \quad U_{l}=\left[\begin{array}{c}U_{l, 1} \\ \vdots \\ U_{l, N_{V}}\end{array}\right] S_{W}^{(l)}=\left[\begin{array}{ccc}S_{W, 11}^{(l)} & \cdots & S_{W, 1 N_{V}}^{(l)} \\ \vdots & \ddots & \vdots \\ S_{W, N_{V} 1}^{(l)} & \cdots & S_{W, N_{V} N_{V}}^{(l)}\end{array}\right] S_{B}^{(l)}=\left[\begin{array}{ccc}S_{B, 11}^{(l)} & \cdots & S_{B, 1 N_{V}}^{(l)} \\ \vdots & \ddots & \vdots \\ S_{B, N_{V} 1}^{(l)} & \cdots & S_{B, N_{V} N_{V}}^{(l)}\end{array}\right]$
Trace ratio: intractable

l-mode discriminant analysis

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{B, r s}^{(l)} U_{l, s}\right)}{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{W, r s}^{(l)} U_{l, s}\right)}
$$

Concatenate multi-view projection matrices

Trace ratio: intractable
Relax to ratio trace

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \operatorname{Tr}\left(\frac{U_{l}^{T} S_{B}^{(l)} U_{l}}{U_{l}^{T} S_{W}^{(l)} U_{l}}\right) \quad \text { Ratio trace: tractable }
$$

l-mode discriminant analysis

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{B, r s}^{(l)} U_{l, s}\right)}{\operatorname{Tr}\left(\sum_{s=1}^{N_{V}} \sum_{r=1}^{N_{V}} U_{l, r}{ }^{T} S_{W, r s}^{(l)} U_{l, s}\right)}
$$

Concatenate multi-view projection matrices

$$
\left.U_{1}^{*}=\underset{U_{l}}{\arg \max } \frac{\operatorname{Tr}\left(U_{l}^{T} S_{B}^{(1)} U_{l}\right)}{\operatorname{Tr}\left(U_{1}^{T} S_{W}^{(l)} U_{l}\right)}\right) \quad U_{l}=\left[\begin{array}{c}
U_{l, 1} \\
\vdots \\
U_{l, N_{v}}
\end{array}\right] S_{W}^{(l)}=\left[\begin{array}{ccc}
S_{W, 11}^{(1)} & \cdots & S_{W, 1 N_{v}}^{(1)} \\
\vdots & \ddots & \vdots \\
S_{W, N_{v} 1}^{(1)} & \cdots & S_{W, N_{v} N_{v}}^{(())}
\end{array}\right] S_{B}^{(1)}=\left[\begin{array}{ccc}
S_{B, 11}^{(1)} & \cdots & S_{B, 1 N_{v}}^{(l)} \\
\vdots & \ddots & \vdots \\
S_{B, N_{v} 1}^{(1)} & \cdots & S_{B, N_{v} N_{v}}^{(())}
\end{array}\right]
$$

Trace ratio: intractable
Relax to ratio trace

$$
U_{l}^{*}=\underset{U_{l}}{\arg \max } \operatorname{Tr}\left(\frac{U_{l}^{T} S_{B}^{(l)} U_{l}}{U_{l}^{T} S_{W}^{(l)} U_{l}}\right) \quad \text { Ratio trace: tractable }
$$

Generalized eigenvalue problem

$$
S_{B}^{(1)} U_{I}=S_{W}^{(l)} U_{I} \Lambda
$$

Iterative solution

3rd order tensor object

Iterative solution

Initialize projection matrices as identity matrices

3rd order tensor object
3rd order tensor object (low dimensional space)

Iterative solution

3 rd order tensor object

Iterative solution

Iterative solution

Iterative solution

Iterative solution

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality				
\#Effective training samples				
Complexity				
Cross-view discrimination capability				
Robustness to SSS problem				
Computational efficiency				

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}			
\#Effective training samples	n			
	$\left.\begin{array}{c}\text { Complexity }\end{array}\left(M^{L}\right)^{3}\right)$			

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}			
\#Effective training samples	n			
Complexity	$O\left(\left(M^{L}\right)^{3}\right)$			
Cross-view discrimination capability	*			
Robustness to SSS problem	*			
Computational efficiency	*			

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}			
\#Effective training samples	n			
	$\left.\begin{array}{c}\text { Complexity }\end{array}\left(M^{L}\right)^{3}\right)$			

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}			
\#Effective training samples	n			
Complexity	$O\left(\left(M^{L}\right)^{3}\right)$			

Analysis of algorithms

－Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}	$N_{V} M^{L}$		
\＃Effective training samples	n	n / N_{V}		
Complexity	$O\left(\left(M^{L}\right)^{3}\right)$	$O\left(\left(N_{V} M^{L}\right)^{3}\right)$		
Cross－view discrimination capability	＊	ざす		
Robustness to SSS problem	＊	H		
Computational efficiency	＊	＊		

Analysis of algorithms

－Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}	$N_{V} M^{L}$		
\＃Effective training samples	n	n / N_{V}		
Complexity	$O\left(\left(M^{L}\right)^{3}\right)$	$O\left(\left(N_{V} M^{L}\right)^{3}\right)$		
Cross－view discrimination capability	＊	ざャ＊		
Robustness to SSS problem	＊	A		
Computational efficiency	＊	A		

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}	$N_{V} M^{L}$		
\#Effective training samples	n	n / N_{V}		
Complexity	$O\left(\left(M^{L}\right)^{3}\right)$	$O\left(\left(N_{V} M^{L}\right)^{3}\right)$		

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}	$N_{V} M^{L}$	M	
\#Effective training samples	n	n / N_{V}	$n M^{L-1}$	
	Complexity	$O\left(\left(M^{L}\right)^{3}\right)$	$O\left(\left(N_{V} M^{L}\right)^{3}\right)$	$O\left(N_{i t e r} L M^{3}\right)$

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}	$N_{V} M^{L}$	M	
\#Effective training samples	n	n / N_{V}	$n M^{L-1}$	
	Complexity	$O\left(\left(M^{L}\right)^{3}\right)$	$O\left(\left(N_{V} M^{L}\right)^{3}\right)$	$O\left(N_{i t e r} L M^{3}\right)$

Analysis of algorithms

- Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}	$N_{V} M^{L}$	M	
\#Effective training samples	n	n / N_{V}	$n M^{L-1}$	
	Complexity	$O\left(\left(M^{L}\right)^{3}\right)$	$O\left(\left(N_{V} M^{L}\right)^{3}\right)$	$O\left(N_{i t e r} L M^{3}\right)$

Analysis of algorithms

－Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}	$N_{V} M^{L}$	M	$N_{V} M$
\＃Effective training samples	n	n / N_{V}	$n M^{L-1}$	$n M^{L-1} / N_{V}$
Complexity	$O\left(\left(M^{L}\right)^{3}\right)$	$O\left(\left(N_{V} M^{L}\right)^{3}\right)$	$O\left(N_{\text {iter }} L M^{3}\right)$	$O\left(N_{\text {iter }} L\left(N_{V} M\right)^{3}\right)$
Cross－view discrimination capability	＊	ざャ	H	※ぎ
Robustness to SSS problem	＊	H	ざさ	ざざ
Computational efficiency	＊	$\vec{*}$	ざぐ	＊※

Analysis of algorithms

－Assumption
\square Equal dimension in each mode $M_{l}=M \forall l$

Algorithms	LDA	MvDA	DATER	MvDATER
Dimensionality	M^{L}	$N_{V} M^{L}$	M	$N_{V} M$
\＃Effective training samples	n	n / N_{V}	$n M^{L-1}$	$n M^{L-1} / N_{V}$
Complexity	$O\left(\left(M^{L}\right)^{3}\right)$	$O\left(\left(N_{V} M^{L}\right)^{3}\right)$	$O\left(N_{\text {iter }} L M^{3}\right)$	$O\left(N_{\text {iter }} L\left(N_{V} M\right)^{3}\right)$
Cross－view discrimination capability	＊	ざャ＊	H	ぶぶ慁
Robustness to SSS problem	＊	H	ざャ	ぶざ家
Computational efficiency	＊	＊	ざぐ	ぶぶ寺

Application to cross-view gait recognition:

Setup

- Data set

CASIA Gait Database B [Yu et al. 2006] (CASIA)

The OU-ISIR Gait Database Large Population data set [iwama et al. 2012] (OU-LP)

Application to cross-view gait recognition:

Setup

- Data set

CASIA Gait Database B [Yu et al. 2006] (CASIA)

The OU-ISIR Gait Database Large Population data set [iwama et al. 2012] (OU-LP)

- Gait feature
\square Gait energy image (GEI) [Han and Bhanu 2006]

55°

$65^{\circ} 75^{\circ}$
OU-LP

85°

Application to cross-view gait recognition:

Setup

- Data set

CASIA Gait Database B [Yu et al. 2006] (CASIA)

The OU-ISIR Gait Database Large Population data set [iwama et al. 2012] (OU-LP)

- Gait feature
\square Gait energy image (GEI) [Han and Bhanu 2006]

Application to cross-view gait recognition:

Setup

- Data set

CASIA Gait Database B [Yu et al. 2006] (CASIA)

The OU-ISIR Gait Database Large Population data set [iwama et al. 2012] (OU-LP)

- Gait feature
\square Gait energy image (GEI) [Han and Bhanu 2006]

0°
Probe

36°
CASIA

Gallery

55°
Probe

55°
Probe

OU-LP

Gallery

Application to cross-view gait recognition:

Result for CASIA

■ Single sample per training subject
\square \#Training subjects: 61
\square \#Test subjects: 61

Application to cross-view gait recognition:
Result for CASIA
■ Single sample per training subject
\square \#Training subjects: 61
\square \#Test subjects: 61

Proposed method yields the best accuracy for the most of cases

Application to cross-view gait recognition:
Result for OULP (Probe: 75 deg)

- Sensitivity analysis of \#training subjects
\square \#Training subjects: 10 to 956
\square \#Test subjects: 956

Application to cross-view gait recognition:
Result for OULP (Probe: 75 deg)

- Sensitivity analysis of \#training subjects
\square \#Training subjects: 10 to 956
\square \#Test subjects: 956

Summary

■ MvDATER: Multi-view Discriminant Analysis with TEnsor Representation

- Future work
\square Comparison with other cross-view gait recognition
\square Validation in various cross-view recognition

