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Inferring Affect
• Since we are dealing with images here, let’s pose it as a problem of 

expression analysis
• Methods can be categorised on the basis of:

– Posed / Spontaneous
– Discrete /  Continuous
– Lab-controlled /  `in the wild’ (unconstrained)
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Inferring Affect (2)
• Since we are dealing with images here, let’s pose it as a problem of 

expression analysis
• Methods can be categorised on the basis of:

– Posed / Spontaneous
– Discrete /  Continuous
– Lab-controlled /  `in the wild’ (unconstrained)

Due to the large number of images being posted on the internet (1.8 B/day) from 
social events, there is another attribute for categorizing emotion recognition:

– Single subject / Multiple subjects in the scene
– Inferring the affect of a group of people from images
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Prior Work
• Hoque et al. 2012

– MIT Mood Meter – four cameras installed at different locations
on MIT campus to infer mood of passers-by
– Based on averaging of smile intensities

4
System snapshot from the original paper
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Prior Work (2)
• Dhall et al. 2012 & 2015

– Group happiness intensity analysis
– Topic modelling of data-driven and manual attributes
– Limited to positive emotion only
– More details in the late morning session!
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Group Affect
• Barsade et al. 1998 and Kelly et al. 2001
– Top-down component: 

Overall emotion of group constructed by uniqueness of individual members’
emotion expression.

– Bottom-up component: 
Emotion emerging at the group level and followed by individual participants of the 
group.

• Survey (Dhall et al. 2015)
– Global affect: 

Scene, clothes, neighbours
– Local affect: 

Facial expression and other facial attributes such as occlusion, age, gender etc.
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Attributes as mentioned in the survey

7

Survey
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Data
• Group Affect Database

– Keywords based search from Flickr, Google Images, HAPPEI database
– Positive – Neutral – Negative classes (3 human annotators)
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Proposed Framework
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Face Analysis

Bottom-up component
• Face detection using Mixture of Pictorial Structures (Zhu and 

Ramanan 2012)
• Facial Action Unit (AU) (CERT toolbox)
• The group is modelled as a Bag of Words (BoW_AU)
• Each face in a group is a word
• Group of people is a document
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Face Analysis (II)

Bottom-up component
• Based on the survey: various attributes about the subjects in the 

group that effect the perception of the affect of a group.
• Age, gender, attractiveness, facial features: glasses, moustaches etc.
• Compute low-level features:

– Pyramid of Histogram of Gradients (PHOG), Bosch et al. 2007
– Local Phase Quantization (LPQ), Ojansivu et al. 2008

• Bag of Words: BoW_LL
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Scene Analysis

Top-down component
• GIST descriptor: Scene_GIST
• CENTRIST descriptor: Scene_CENTRIST
• Descriptors compute statistics at global level
• Take into consideration both the scene background and information 

that may define the situation such as clothes
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Fusion
• Fusion is performed between the scene and face features
• Moshe Bar’s (2004) scene context model: 

– Low-resolution holistic representation  similar to scene descriptor 
– Detailed object-level representation  face analysis

Feature Fusion and Multiple Kernel Learning
• BoW_AU
• BoW_LL
• Scene_CENTRIST or Scene_GIST
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Experiments

Classification accuracy (%) feature wise

• High-level features based on AU perform similar to the low-level 
feature combination

• Classification accuracy for the Negative class is lower
• Why? Negative affect images in the database have a higher number 

of non-frontal faces and occlusions (e.g. protest rallies)
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Experiments (2)

Feature fusion and MKL based classification 
accuracy (%) performance
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Conclusions
• A new framework for inferring the affect of a group of people
• A new labelled database containing images of groups of people
• Top-down component – scene descriptors
• Bottom-up component – face analysis
• MKL based fusion framework

Future Work
• Extension to videos
• Adding body pose information
• Adding intensities to data to emulate valence-arousal labelling
• Database extension (currently 800 images)
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Thank you

Questions?

– EmotiW 2015 Challenge and Workshop at ICMI 2015
(9-13 Nov 2015, Seattle)
http://icmi.acm.org/2015/index.php?id=challenges

– Hiring three Assistant Professors at the University of Canberra
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