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1. INTRODUCTION
• Gesture: “A movement of part of the body, especially a hand 

or the head, to express an idea or meaning.”
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• Aircraft communication gesture recognition

• Recognition of socio-cultural gestures

Examples of specific applications
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Gesture spotting and recognition
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• Gesture spotting

• Gesture recognition

Continuous input Spotting Start and End Points 
of Gestures

Segmented Gesture Recognition Class label 

INPUT

INPUT OUTPUT

OUTPUT
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Problem Definition
• Problem:

• Given a training set of multi-modal videos with multiple examples 
of all gestures in a gesture vocabulary, design a framework 
capable of automatically and accurately spotting and classifying 
gestures present in a set of test videos
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Related work
• Generative Graphical Models

• Hidden Markov Model
• Starner et al., 1997

• Discriminative Graphical Models
• Hidden Conditional Random Fields

• Song et al., 2011

• Other Discriminative Models
• Support Vector Machines

• Huang et al., 2009
• Tree Ensembles

• (ours)
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2. RANDOM FORESTS

…

… …

… …

Training set 

Bootstrap sample

……

Parent node

Leaf nodes

Random feature selection

Random feature selectionRandom feature selection

Image reprinted from:
Shotton, Jamie, et al. "Real-time human pose recognition in parts from 
single depth images." Communications of the ACM 56.1 (2013): 116-124.
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• Given a training set S of data points and their labels, trees are 
built to optimize a certain function, e.g. Information gain (I)
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• Random forests have been used to good effect in:

• human pose recognition
• Shotton et al., 2013

• object segmentation
• Schroff et al., 2008

• image classification
• Bosch et al., 2007
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3. FRAMEWORK
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3. FRAMEWORK
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…

Input

Training: Input
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…

Input

Joint-based features

• Normalized positional coordinates of joints
• Rotation angles of joints
• Positional and angular velocity of joints

Feature Extraction

Image-based features

• Histogram of Oriented Gradients 
computed on  boxes centered around the 
left and right hands 

Training: Feature Extraction

Feature Fusion • Feature are fused to create  a 
combined feature descriptor
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…

Input

Joint-based features

Feature Extraction

Image-based features

Gesture Representation

…

…

…

1. Input feature 
matrix of a 
gesture, and 
smooth using a 
moving average 
filter

features
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…2. Divide into equal-sized temporal segments

3. Select median features and concatenate

Training: Gesture Representation
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Input

Joint-based features

Feature Extraction

Image-based features

Gesture Representation
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1. Input feature 
matrix of a 
gesture
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…2. Divide into equal-sized temporal segments

3. Select median features and concatenate

Random Forest Training
Input to classifier:
Set of examples of all gestures 
in the training set, as well as 
randomly chosen examples of 
non-gestural intervals

Training: Initial Random Forest Training
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Input

Joint-based features

Feature Extraction

Image-based features

Gesture Representation
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1. Input feature 
matrix of a 
gesture

features
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…2. Divide into equal-sized temporal segments

3. Select median features and concatenate

Random Forest TrainingCollect Hard Negatives
• Run classifier on 

continuous input of the 
training set

• Collect all misclassified 
instances and add them to 
the original training set and 
retrain the classifier 

Training: Collection of hard negatives
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…

Input

Joint-based features

Feature Extraction

Image-based features

Gesture Representation

…

…

…

1. Input feature 
matrix of a gesture 
after temporal 
smoothing

features

fr
am

es

…2. Divide into equal-sized temporal segments

3. Select median features and concatenate

Random Forest TrainingCollect Hard Negatives
• Run classifier on 

continuous input of the 
training set

• Collect all misclassified 
instances and add them to 
the original training set and 
retrain the classifier 

Until number of hard negatives fall below threshold
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4. DATASETS
NATOPS

• Naval Air Training and Operating Procedures Standardization 
gestures

• 24 aircraft handling signals, performed by 20 subjects, 20 
times

• Dataset includes RGB color images, depth maps, mask images 
and skeletal information
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CHALEARN

• 20 unique Italian cultural and anthropological signs
• Development data: 7,754 labelled gestures
• Validation data: 3,363 gestures
• Test data: 2,742 gestures
• Dataset includes RGB color images, depth maps, mask images 

and skeletal information
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5. EXPERIMENTAL RESULTS
• NATOPS

• Classification only 

• CHALEARN
• Classification and Segmentation
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NATOPS classification accuracy averaged over all subjects and gestures: 87.35%  
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Figure: Pairs of similar gestures
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Classifier Average Classification 
Accuracy

*HMM 77.67%

*HCRF 87.0%

Random Forest (ours) 88.1%
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* As shown in: 
Song, Yale, L. Morency, and Randall Davis. "Multi-view latent 
variable discriminative models for action recognition." Computer 
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 
IEEE, 2012.

Confusion Matrix for pairs of similar gestures
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CHALEARN classification accuracy averaged over all subjects and gestures: 88.91%
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Classifier Jaccard score

Deep Neural 
Network

0.84

Random Forest 
(our)

0.68

Competition
baseline

0.37
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Table: CHALEARN 2014 Competition 
results
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6. DISCUSSION
• We have presented a simple and  efficient random forest 

framework. 
• Reliable classifier that generalizes well
• The task of simultaneously detecting and classifying gestures is a 

more difficult challenge than solely classifying correctly 
segmented gestures.
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THANK YOU!
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