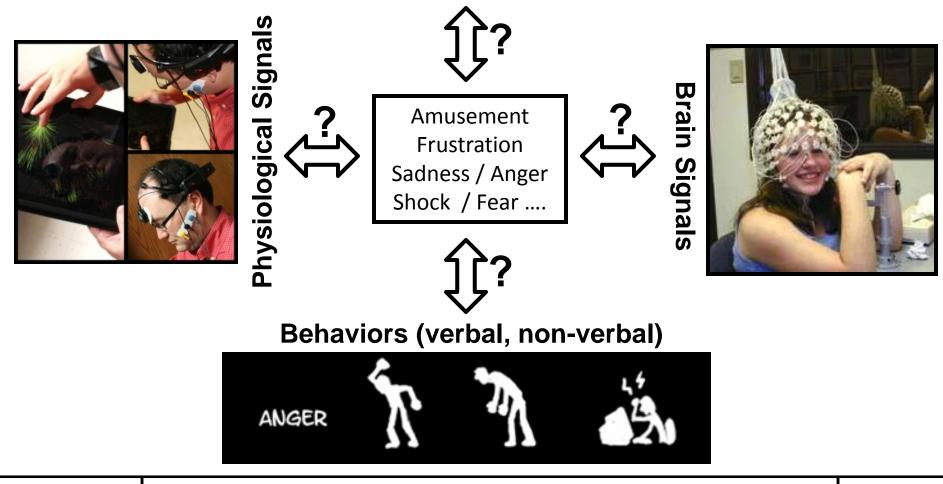


DECAF: MEG-based Multimodal Database for Decoding Affective Physiological Responses

Mojtaba Khomami Abadi^{1,5} Ramanathan Subramanian² , Seyed Mostafa Kia^{1,3} Ioannis Patras⁴, Paolo Avesani³ Nicu Sebe¹

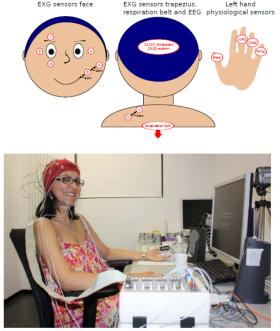
¹University of Trento


²Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore ³NeuroInformatics Laboratory (NILab), Fondazione Bruno Kessler ⁴Queen Mary University of London ⁵Semantic, Knowledge and Innovation Lab (SKIL), Telecom Italia

FG 2015

Modalities in the State of the Art

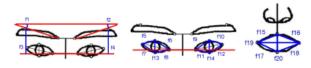
Facial expressions (Posed, Spontaneous)



Means

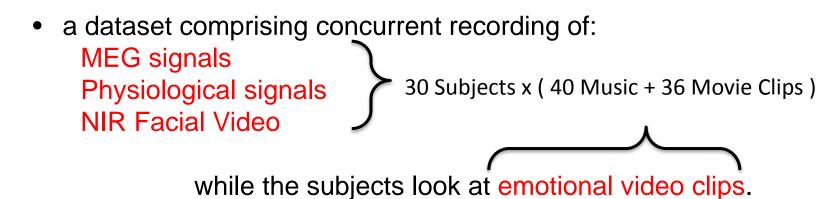
Introduction - SOA. - Problem - Solution – Results - Conclusion- Q?

Existing datasets



EEG Brain Signals Physiological Signals Facial Videos (Music Video Clips)

DEAP - Koelstra et al. [6], 2012


EEG Brain Signals Physiological Signals Eye Gaze Facial Videos (Movie Clips - Images)

MAHNOB- Soleymani et al. [7], 2012

Motivation

- Limitations with sensing equipment mean evaluations using stimuli presented over a short time interval and small user population.
- MEG is less invasive and the user response is less affected by psychological stressors enabling naturalistic experience.
- Suitability of stimuli Movie clips vs. Music videos

DECAF:

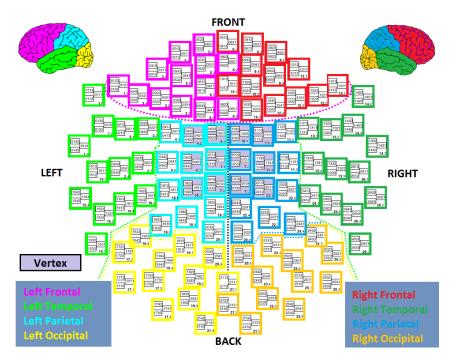
4/18

EEG for emotion recognition:

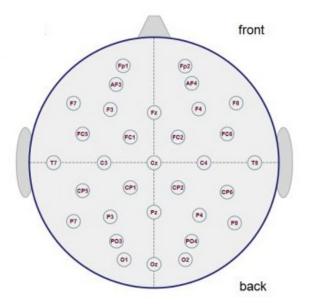
Koelstra et al. [6]: EEG effectively encodes the emotional responses of human to music videos Our assumption: MEG also encodes emotional responses

MEG vs EEG:

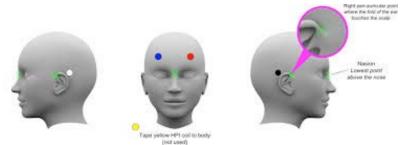
- Both EEG and MEG have high temporal resolution (1-5kHz)
- EEG sensor is much cheaper in price than MEG
- EEG is somewhat invasive
- EEG signal is distorted by hair and scalp bone
- MEG is much more accurate and gives a very good spatial resolution of brain responses (#channels: 306 > 32)
- Brain activity source localization techniques work well for MEG but are not suitable with EEG
- MEG is less invasive than EEG (no direct contact)



EEG


5/18

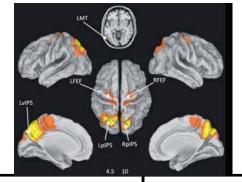
306 Channels


Elekta NeuroMag Device

32 Channels

DECAF MEG includes:

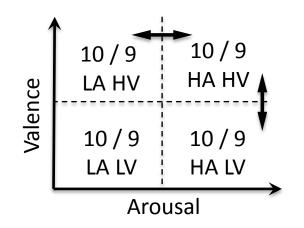
Time-Continuous recordings of Head Pose Indicators (HPIs)


- a 300 Hz signal to locate the exact pose of head under MEG

3D Scan of the users' head shape for all the users

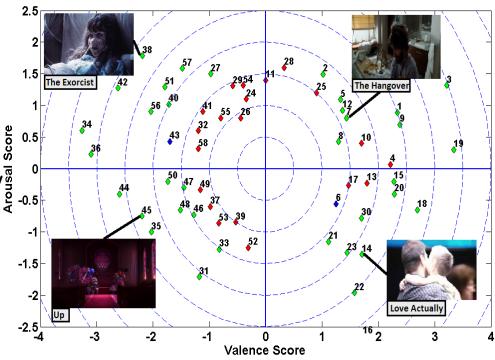
MR scan of 15 users for source-brain activity analysis

- will become available soon

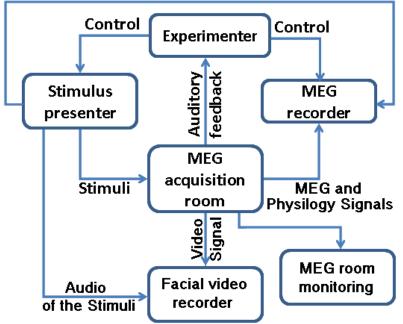

MEG vs EEG

Introduction - SOA. - Problem - Solution - Results - Conclusion- Q?

Stimuli :

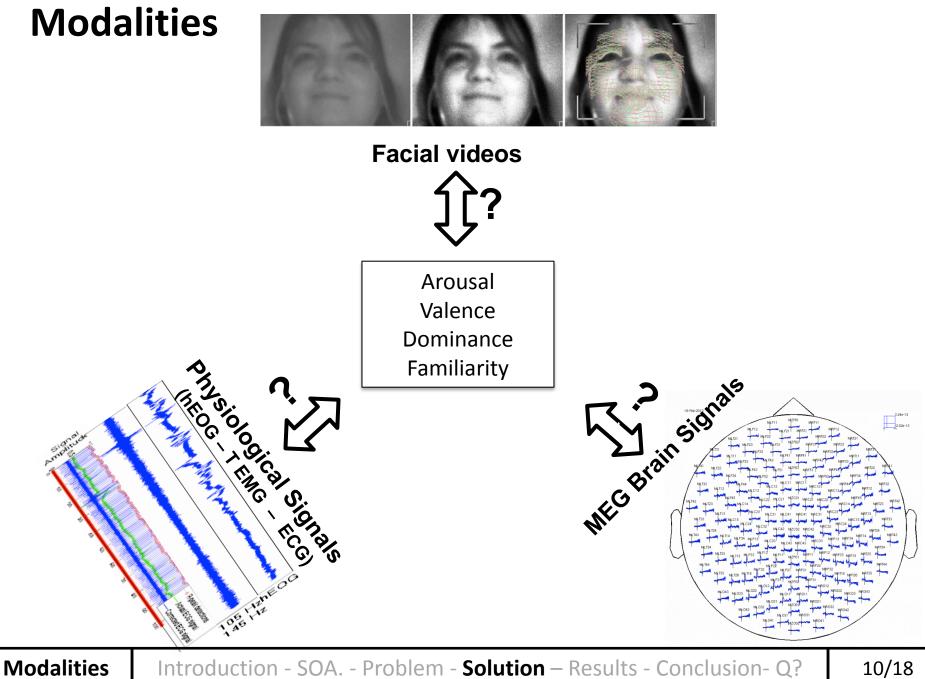

Music video clips:

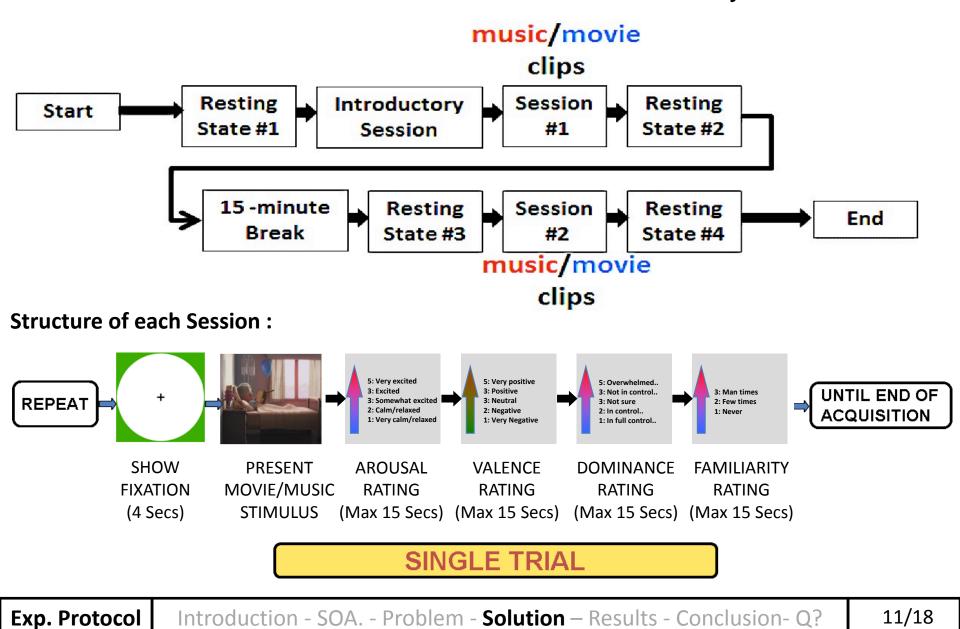
- 40 music video clips proposed by DEAP [6]
- 60 second highlight for each music video clip

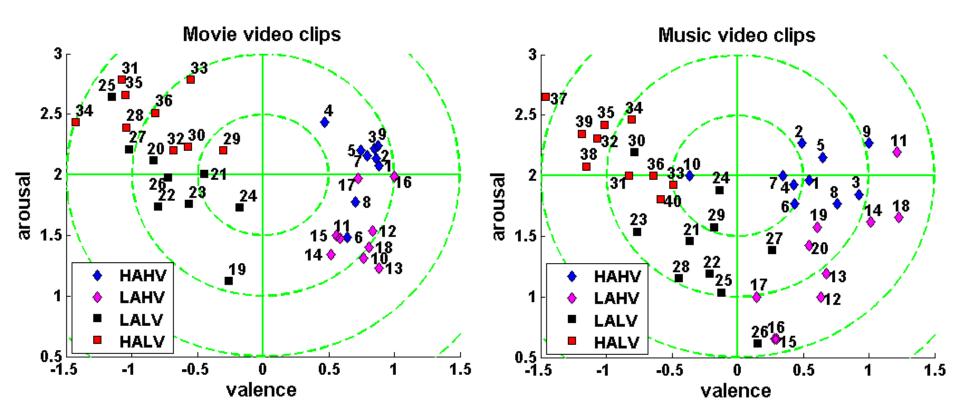

Movie videos:

- 36 movie clips
- varying length (51" to 128")
 Mean=80" Std. = 20"
- Selected based on a preliminary study ^w/_e ⁰
 with a pool of 58 clips and 42 graduate students

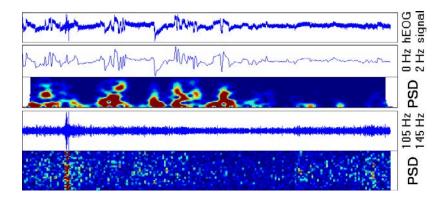
Experiment setup


- 30 subjects (16 male, 14 female, age range 27.3 ± 4.3)
- 76 stimuli (40 music video clips + 36 movie video clips)
- MEG brain signal , ECG , horizontal EOG (hEOG), Trapezius EMG (tEMG), NIR facial videos recorded
- Subjects' self-assessments

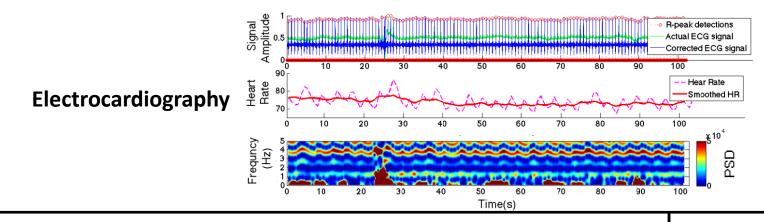

Synchronization marker


Modalities

Experiment setup – Protocol : MATLAB – PsychToolbox + ASF


Distribution of self-assessment ratings:

Psycho-Physiological signal analysis



Facial Landmark Tracks

Horizontal Electrooculography

Trapezius Electromyography

Features Introduction - SOA. - Problem - Solution – **Results** - Conclusion- Q?

MEG Correlates with emotions

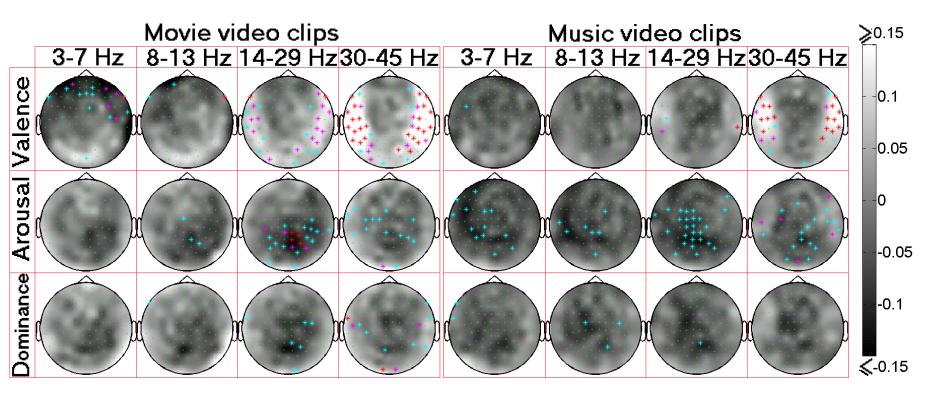


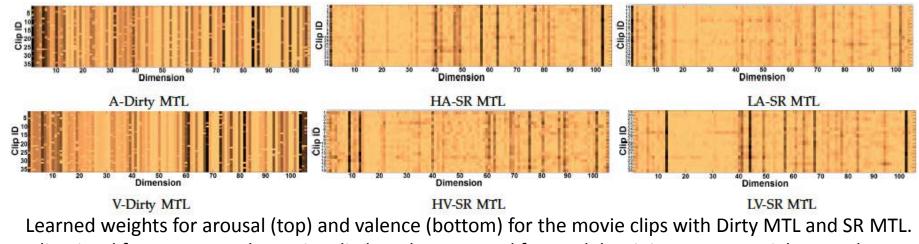
Fig. 7. Spearman correlation analysis between the MEG responses and participants' self-assessments. Correlation over each channel (in green) is denoted by the gray level, and significant (p < 0.05, p < 0.01, and p < 0.001) correlations are highlighted with * marks (in cyan, magenta, and red).

Classification Results using Linear SVM:

 $^{*} = p < 0.05, ^{**} = p < 0.01, ^{***} = p < 0.001$

		Movie (PB)			M	Music (PB)		Movie (SB)		Music (SB)			
		A	V	D	A	V	D	A	V	D	A	V	D
Vertex	Acc	0.59	0.57	0.57	0.51	0.51	0.52	0.55	0.55	0.51	0.53	0.50	0.53
Vertex	F1	0.58***	0.57***	0.57***	0.51	0.51	0.51	0.54	0.53	0.48	0.52	0.49	0.49
Left	Acc	0.60	0.60	0.58	0.51	0.51	0.52	0.59	0.58	0.51	0.54	0.50	0.54
Temporal	F1	0.60***	0.60***	0.58***	0.51	0.51	0.51	0.59***		0.49	0.52	0.49	0.51
Right	Acc	0.62	0.56	0.57	0.55	0.53	0.53	0.59	0.55	0.54	0.60	0.54	0.54
Temporal	F1	0.62***	0.55**	0.57***	0.55*	0.53*	0.53*	0.58**	0.53	0.51	0.58***	0.53	0.51
Left	Acc	0.60	0.56	0.57	0.52	0.52	0.55	0.55	0.56	0.53	0.53	0.48	0.52
Parietal	F1	0.60***	0.55**	0.57***	0.52	0.51	0.54*	0.54*	0.54*	0.49	0.52	0.47	0.49
Right	Acc	0.58	0.57	0.57	0.51	0.51	0.52	0.55	0.55	0.58	0.51	0.53	0.54
Parietal	F1	0.57**	0.57***	0.56***	0.50	0.50	0.52	0.53	0.53	0.55**	0.50	0.52	0.51
Left	Acc	0.58	0.59	0.57	0.51	0.50	0.52	0.53	0.56	0.54	0.55	0.48	0.53
Occipital	F1	0.57**	0.58***	0.56**	0.51	0.50	0.52	0.51	0.54*	0.50	0.54*	0.47	0.50
Right	Acc	0.60	0.56	0.56	0.50	0.53	0.50	0.57	0.54	0.55	0.54	0.53	0.53
Occipital	F1	0.60***	0.55**	0.56*	0.50	0.53	0.50	0.56**	0.53	0.52	0.53	0.51	0.49
Left	Acc	0.59	0.56	0.57	0.55	0.51	0.51	0.56	0.56	0.53	0.57	0.55	0.60
Frontal	F1	0.58***	0.56***	0.57***	0.54*	0.50	0.51	0.55**	0.55**	0.50	0.55**	0.54*	0.56**
Right	Acc	0.55	0.59	0.61	0.50	0.52	0.50	0.51	0.54	0.53	0.54	0.52	0.53
Frontal	F1	0.55***	0.59***	0.61***	0.49	0.52	0.49	0.50	0.53	0.49	0.53	0.51	0.49 /
MEG	Acc	0.60	0.61	0.59	0.53	0.53	0.54	0.55	0.58	0.55	0.58	0.56	0.55
Early Fusion	F1	0.60***	0.61***	0.59***	0.52	0.53	0.54*	0.54*	0.58***	0.53	0.55**	0.55**	0.53*
Peripheral	Acc	0.55	0.60	0.50	0.55	0.59	0.56	0.56	0.60	0.56	0.57	0.55	0.57
Physiology	F1	0.54*	0.59***	0.50	0.54*	0.59***		0.55**	0.59***	0.54*	0.56**	0.54*	0.54**
Facial	Acc	0.58	0.64	0.53	0.60	0.61	0.53	0.56	0.61	0.55	0.58	0.60	0.55
Expressions	F1	0.57**	0.64***	0.53	0.59**	0.60***		0.54**	0.61***	0.54	0.56**	0.58***	0.52
Multimedia	Acc	0.58	0.64	0.33	0.85	0.73	0.57	0.52	0.61	0.53	0.62	0.68	0.58
Content	F1	0.57	0.64	0.33	0.85	0.72	0.57	0.51	0.60***		0.61***	0.67***	
Late	Acc	0.70	0.79	0.66	0.85	0.82	0.66	0.66	0.73	0.72	0.73	0.76	0.74
Fusion	F1	0.68***	0.77***	0.64***	0.84***	0.81***	0.65***	0.62***	0.71***	0.66***	0.70***	0.73***	0.67***

P. Results


Continuous Emotion Estimation using Multi-task learning

		_	Fi	rst	Sec	ond
			5 s	15 s	5 s	15 s
		Lasso	1.98 ± 1.25	3.07 ± 1.48	1.68 ± 0.18	2.81 ± 0.97
	ММ	MT-Lasso	1.00 ± 0.05	1.66 ± 0.54	1.18 ± 0.14	2.03 ± 0.71
	IVIIVI	Dirty MTL	1.11 ± 0.06	1.79 ± 0.55	1.27 ± 0.16	2.10 ± 0.69
Val		SR MTL	1.09 ± 0.09	1.55 ± 0.39	1.89 ± 0.13	2.80 ± 0.74
Vai		Lasso	1.30 ± 0.09	1.87 ± 0.46	2.03 ± 0.25	2.93 ± 0.78
	MEG	MT-Lasso	1.32 ± 0.09	1.98 ± 0.54	1.54 ± 0.21	2.47 ± 0.81
	WIEG	Dirty MTL	1.42 ± 0.10	2.44 ± 0.82	1.51 ± 0.19	2.44 ± 0.82
		SR MTL	1.09 ± 0.05	1.58 ± 0.41	2.07 ± 0.17	2.84 ± 0.69
		Lasso	1.54 ± 0.47	2.11 ± 0.77	2.18 ± 0.58	3.28 ± 2.17
	ММ	MT-Lasso	0.91 ± 0.11	1.47 ± 0.47	1.10 ± 0.08	1.89 ± 0.66
	IVIIVI	Dirty MTL	1.07 ± 0.09	1.62 ± 0.46	1.23 ± 0.08	1.97 ± 0.61
Asl		SR MTL	1.01 ± 0.07	1.42 ± 0.35	1.86 ± 0.13	2.48 ± 0.53
ASI	MEG	Lasso	1.11 ± 0.08	1.65 ± 0.45	1.75 ± 0.06	2.53 ± 0.66
		MT-Lasso	1.12 ± 0.09	1.71 ± 0.51	1.41 ± 0.11	2.27 ± 0.73
	MILO	Dirty MTL	1.19 ± 0.11	1.84 ± 0.56	1.38 ± 0.11	2.25 ± 0.75
		SR MTL	0.99±0.08	1.42 ± 0.36	1.73 ± 0.06	2.44 ± 0.60

Valence/Arousal prediction with multimedia (MM) and MEG features.

RMSE mean, standard deviation over four runs are reported.

Range of V, A levels is [-3, 3]. Best model is shown in bold.

Audio-visual features over the entire clip length were used for model training. Larger weights are denoted using darker shades.

Conclusion

Largest multi-modal affective dataset with MEG, peripheral and facial responses: 30 subjects X (40 music video + 36 movie clips) over 2K samples

Suitable for cognitive-science natural-stimuli studies with time-continuous HPI recorded head-shape-models recordings of artifacts: ECG + tEMG + hEOG (includes facial EMG) MR scans of 15 users for source brain activity analysis

Includes time-continuous valence and arousal labels for the 36 movie video clips for

time-continuous Multi-Media affective tagging

Thank you !

http://disi.unitn.it/~mhug/DECAF.html

Thanks

Questions Introduction - SOA. - Problem - Solution – Results - Conclusion- Q?